We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a severe and life-threatening complication, characterised by multi-organ failure and high short-term mortality. However, there is limited information on the impact of various comorbidities on HBV-ACLF in a large population. This study aimed to investigate the relationship between comorbidities, complications and mortality. In this retrospective observational study, we identified 2166 cases of HBV-ACLF hospitalised from January 2010 to March 2018. Demographic data from the patients, medical history, treatment, laboratory indices, comorbidities and complications were collected. The mortality rate in our study group was 47.37%. Type 2 diabetes mellitus was the most common comorbidity, followed by alcoholic liver disease. Spontaneous bacterial peritonitis, pneumonia and hepatic encephalopathy (HE) were common in these patients. Diabetes mellitus and hyperthyroidism are risk factors for death within 90 days, together with gastrointestinal bleeding and HE at admission, HE and hepatorenal syndrome during hospitalisation. Knowledge of risk factors can help identify HBV-ACLF patients with a poor prognosis for HBV-ACLF with comorbidities and complications.
Although many organizations encourage employees to voice, employees may be reluctant to voice directly because they are afraid that their supervisors will perceive it as challenging their face (i.e., the positive image or social value of an individual). Alternatively, employees could deliver improvements or express concerns to their supervisors using indirect and implicit approaches, which we refer to as ‘implicit voice delivery’. Applying face theory, we examine the antecedents and outcomes as well as two boundary conditions of implicit voice delivery in organizations with two studies. In Study 1, we define the construct and develop a measure of implicit voice delivery. In Study 2, we test our proposed model with supervisor-subordinate dyadic data from a time-lagged survey. Results demonstrate that concern for other people's face drives employees to express their voices implicitly and that this relationship is stronger when supervisors’ concern for their own face is high rather than low. In addition, implicit voice delivery is associated with supervisors’ favorable response in terms of voice endorsement. Furthermore, the effect on voice endorsement is stronger when the supervisor is more able to infer meaning from implicit messages. Theoretical contribution and managerial implications are discussed.
To examine the association between physician–patient treatments shared decision making (SDM), patient satisfaction, and adoption of a new health technology.
Methods
A cross-sectional study was conducted from July 2016 to October 2016 in Fujian Province and Shanghai, in Eastern China. A total of 542 physicians and 619 patients in eleven hospitals were surveyed. Patients and their treating physicians completed self-reported questionnaires on patient–physician SDM, satisfaction with treatment decision making and adoption of a new health technology. Correlation analysis, multivariate logistic regression and multivariate linear regression were performed.
Results
The majority (68.20 percent) of patients preferred SDM. Involvement of patients in SDM was positively associated with their satisfaction with treatment decision making (p < .001) and adoption of a new health technology (p < .05). Better concordance between their preference and actual SDM was positively associated with patients' adoption behavior (p < .05), but no statistically significant association was found between concordance and satisfaction.
Conclusion
SDM was the most important predictor of patients' satisfaction with decision making and adoption of a new health technology. Therefore, better communication between physicians and patients is recommended to improve their SDM, increase patient satisfaction and to assist with the adoption of new technologies. Training healthcare provider and teaching communication skills in working with patients in the initial stage of technology diffusion is required.
Reducing stigma is a perennial target of mental health advocates, but effectively addressing stigma relies on the ability to correctly understand and accurately measure culture-specific and location-specific components of stigma and discrimination.
Methods
We developed two culture-sensitive measures that assess the core components of stigma. The 40-item Interpersonal Distance Scale (IDS) asks respondents about their willingness to establish four different types of relationships with individuals with 10 target conditions, including five mental health-related conditions and five comparison conditions. The 40-item Occupational Restrictiveness Scale (ORS) asks respondents how suitable it is for individuals with the 10 conditions to assume four different types of occupations. The scales – which take 15 min to complete – were administered as part of a 2013 survey in Ningxia Province, China to a representative sample of 2425 adult community members.
Results
IDS and ORS differentiated the level of stigma between the 10 conditions. Of the total, 81% of respondents were unwilling to have interpersonal relationships with individuals with mental health-related conditions and 91% considered them unsuitable for various occupations. Substantial differences in attitudes about the five mental health-related conditions suggest that there is no community consensus about what constitutes a ‘mental illness’.
Conclusions
Selection of comparison conditions, types of social relationships, and types of occupations considered by the IDS and ORS make it possible to develop culture-sensitive and cohort-specific measures of interpersonal distance and occupational restrictiveness that can be used to compare the level and type of stigma associated with different conditions and to monitor changes in stigma over time.
This numerical study focuses on the coherent structures and bypass transition mechanism of the Stokes boundary layer in the intermittently turbulent regime. In particular, the initial disturbance is produced by a temporary roughness element that is removed immediately after triggering a two-dimensional vortex tube under an inflection-point instability. The present study reveals a complete scenario of self-induced motion of a vortex tube after rollup from the boundary layer. The trajectory of the vortex tube is reasonably described based on the Helmholtz point-vortex equation. The three-dimensional transition of the vortex tube is attributed to the Crow instability, which leads to a sinusoidal disturbance that eventually evolves into a ring-like structure, especially for the weaker vortex. Further investigation demonstrates that three-dimensional or quasi-three-dimensional vortex perturbations in the free stream play a critical role in the boundary layer transition through a bypass mechanism, which is featured by the non-modal and explosive transient growth of the subsequent boundary layer instabilities. This transition scenario is found to be analogous to the oblique transition in the steady boundary layer, both of which are characterised by the formation of streaks, rollup of hairpin-like vortices and burst into turbulent spots. In addition, the streamwise propagation of turbulent spots is discussed in detail. To shed more light on the nature of the intermittently turbulent Stokes boundary layer, a conceptual model is proposed for the periodically self-sustaining mechanism of the turbulent spots based on the present numerical results and experimental evidence reported in the literature.
X-ray powder diffraction data, unit-cell parameters and space group for azilsartan, C25H20N4O5, are reported [a = 9.641(3) Å, b = 11.301(9) Å, c = 20.010(8) Å, α = 90°, β = 90.351(5)°, γ = 90°, unit-cell volume V = 2196.735(4) Å3, Z = 4, ρcal = 1.379 g·cm−3, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.
X-ray powder diffraction data, unit-cell parameters, and space group for alogliptin benzoate, C18H21N5O2·C7H6O2, are reported [a = 28.8260(8) Å, b = 9.9654(4) Å, c = 8.1477(8) Å, α = 90, β = 90, γ = 90°, unit-cell volume V = 2340.57 Å3, Z = 4, ρcal = 1.3097 g cm−3, and space group P212121]. All measured lines were indexed and are consistent with the P212121 space group, No detectable impurities were observed.
The high-energy oscillating electric current pulse (ECP) technology was introduced to relieve the residual stresses in the small AISI 1045 steel specimens treated by the pulsed-laser surface irradiation. The high-energy oscillating ECP stress relief experiments were conducted to study the effectiveness of the high-energy oscillating ECP technology. In addition, the electroplasticity framework was developed based on the thermal activation theory to reveal the mechanism of the high-energy oscillating ECP stress relief. The results show that the high-energy oscillating ECP stress relief has good effects on eliminating the residual stress. Furthermore, the residual stress relieving mechanism of the high-energy oscillating ECP stress relief can be attributed to the electric softening effect and the dynamic stress effect. The findings confirm that the significant effects of high-energy oscillating ECP on metal plasticity and provide a basis to understand the underlying mechanism of the high-energy oscillating ECP stress relief.
The high-frequency vibration technology was introduced to relieve the quenched residual stress in the Cr12MoV steel based on the high-frequency vibration system that mainly consisted of an electromagnetic vibrator and an amplitude boost unit. The high-frequency vibratory stress relief (VSR) experiments were conducted to study the effectiveness of the high-frequency vibration technology. In addition, the high-frequency vibration plasticity model was developed based on the thermal activation theory to reveal the mechanism of the high-frequency VSR. The results show that the high-frequency VSR has good effects on eliminating residual stress, while the surface hardness for the Cr12MoV steel remains almost the same. Moreover, there are no changes in the grain size of the Cr12MoV steel during the high-frequency VSR, while the dislocation density for the Cr12MoV steel during the high-frequency VSR decreases by 27.21%. The decrease of dislocation density in the Cr12MoV steel is the essence of residual stress relaxation. The findings confirm the significant effects of high-frequency vibration on metal plasticity and provide a basis to understand the underlying mechanism of the high-frequency VSR.
X-ray powder diffraction data, unit-cell parameters, and space group for deferasirox, C21H15N3O4, are reported [a = 8.821(7) Å, b = 26.798(2) Å, c = 7.540(4) Å, α = 90°, β = 94.655(2)°, γ = 90°, unit-cell volume V = 1776.7(3) Å3, Z = 4, ρcal = 1.396 g cm−3, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurity was observed.
The microstructure evolution and mechanical properties of ultrafine-grained (UFG) Al sheets subjected to accumulative roll bonding (ARB) and subsequent cryorolling was studied. Cryorolling can suppress the dynamic softening of UFG Al sheets subjected to ARB at room temperature. After the third ARB pass, the grains are slightly refined as the number of ARB passes increases. However, the grains are significantly refined further during cryorolling. The grain size of 460 nm achieved after the third ARB pass is reduced to 290 nm after two cryorolling passes with total reduction ratio 80%. Sheets subjected to ARB + cryorolling show improved mechanical properties compared to only ARB-processed sheets due to a change in the fraction of high-angle boundaries and elongated grains. The deformation mechanism for ultrafine grains at room temperature is determined by grain boundary sliding or dislocation-based recovery, while it is governed by dislocation glide at cryogenic temperature.
X-ray powder diffraction data for 1-(4-Nitrophenyl)-2-piperidinone, C11H12N2O3, are reported [a = 9.514(3) Å, b = 12.308(6) Å, c = 9.175(1) Å, α = 90°, β = 91.811(2)°, γ = 90°, V = 1073.94 Å3, Z = 4, ρcal = 1.362 g cm−3 and space group P21/n]. All measured lines were indexed and are consistent with the P21/n space group. No detectable impurities were observed.
The role of diffusion tensor tractography (DTT) has become increasingly important in the preoperative mapping of brain white matter. Recently, functional magnetic resonance imaging (fMRI) driven DTT has provided the ability to evaluate the spatial relationship between the corticospinal tract (CST) and motor resection tumor boundaries. The main objective of this study was improvement of the preoperative assessment of the CST in patients with gliomas involving the motor cortical areas.
Methods:
Seventeen patients with gliomas involving motor cortical areas underwent 3 dimensions (3D) T1-weighted imaging for anatomical referencing, using both fMRI and diffusion tensor imaging (DTI). We used the fast-marching tractography (FMT) algorithm to define the 3D connectivity maps within the whole brain using seed points selected in the white matter adjacent to the location of fMRI activation. The target region of interest (ROI) was placed in the cerebral peduncle. Karnofsky performance status (KPS) scores were evaluated for each patient before and after surgery.
Results:
The CST of a total seventeen patients were successfully tracked by choosing seed and target ROI on the path of the fibers. What is more, DTT can indicate preoperatively the possibility for total glioma removal or the maximum extent of surgical resection. The postoperative average KPS score for the seventeen patients enrolled increased by more than 10 points.
Conclusions:
Incorporation of fMRI driven DTT showed a maximum benefit in surgical treatment of gliomas. Our study of the assessment precision should enhance the accuracy of glioma operations with a resulting improvement in postoperative patient outcome.
The Chehugou granite-hosted molybdenum deposit is typical of the Xilamulun metallogenic belt, which is an important Mo–Ag–Pb–Zn producer in China. A combination of major and trace element, Sr and Nd isotope, and zircon U–Pb isotopic data are reported for the Chehugou batholith to constrain its petrogenesis and Mo mineralization. The zircon SIMS U–Pb dating yields mean ages of 384.7 ± 4.0 Ma and 373.1 ± 5.9 Ma for monzogranite and syenogranite and 265.6 ± 3.5 Ma and 245.1 ± 4.4 Ma for syenogranite porphyry and granite porphyry, respectively. The Devonian granites are calc-alkaline with K2O/Na2O ratios of 0.44–0.52, the Permian granites are alkali-calcic with K2O/Na2O ratios of 1.13–1.25, and the Triassic granites are calc-alkaline and alkali-calcic rocks with K2O/Na2O ratios of 0.78–1.63. They are all enriched in large-ion lithophile elements (LILEs) and depleted in high-field-strength elements (HFSEs) with negative Nb and Ta anomalies in primitive mantle-normalized trace element diagrams. They have relatively high Sr (189–1256 ppm) and low Y (3.87–5.43 ppm) concentrations. The Devonian granites have relatively high initial Sr isotope ratios of 0.7100–0.7126, negative ɛNd(t) values of −12.3 to −12.4 and 206Pb/204Pb ratios of 16.46–17.50. In contrast, the Permian and Triassic granitoids have relatively low initial 87Sr/86Sr ratios (0.7048–0.7074), negative ɛNd(t) values of −10.1 to −13.1 and 206Pb/204Pb ratios of 17.23–17.51. These geochemical features suggest that the Devonian, Permian and Triassic Chehugou granitoids were derived from ancient, garnet-bearing crustal rocks related to subduction of the Palaeo-Asian Ocean and subsequent continent–continent collision between the North China and Siberian plates.
We report a novel approach to realize the formation of well-distributed nanodispersions in n-type filled skutterudite through the manipulation of metastable void fillers by a designed sophisticated process of materials synthesis. Metastable Ga filling in CoSb3 is proved to happen at high temperature. The subsequent controlled annealing procedure drives Ga out of the crystal voids and finally leads to the homogeneous dispersion of GaSb nanodots with an average size of 11 nm in CoSb3 matrix. The grain size of nanodispersions can be manipulated by the controlled cooling procedure. The well-distributed nanodispersions are observed to enhance Seebeck coefficients and reduce lattice thermal conductivity at low temperature. Therefore, the thermoelectric performance of nanocomposite is improved in the whole temperature range. The highest figure of merit (ZT) is obtained to be 1.45 at 850 K, and an average ZT of 0.99 in 300−850 K is achieved for Yb0.26Co4Sb12/0.2GaSb nanocomposite.
This article focuses on advances in both basic and applied research on soybean germplasm resources collected from China and dispersed to the world. Many landraces developed over the course of the 4500 years since its domestication in the Huangdi period. Systematic germplasm collection was begun in the early 20th century by Professor Shou Wang, and since then over 170,000 accessions have been conserved worldwide. Evaluation with respect to key morphological characteristics, pest resistance, abiotic stress tolerance and nutritional quality attributes has been widely carried out. In addition, genetic diversity has been assessed at the DNA level, and used to establish core collections for both cultivated (Glycine max) and wild (Glycine soja) soybean. Some core sets have targeted the most used parental lines, and others have focused on specific traits, such as resistance to the soybean cyst nematode or to soybean mosaic virus, or enhanced phosphorus use efficiency. The recent acquisition of the soybean genome sequence should accelerate the utilization of not only the Chinese soybean germplasm collection, but also those maintained elsewhere in the world.
The testosterone-inducible regulator (teiR) gene was cloned from Comamonas testosteroni chromosomal DNA, and introduced into plasmids pKtac2 (containing a tac promoter) and pK18 to yield plasmids pKtac2-teiR and pKteiR100. The recombinant plasmids were transformed into competent Escherichia coli HB101 and total protein was extracted to detect the TeiR protein expression level using enzyme-linked immunosorbent assay (ELISA). E. coli transformed by pKtac2-teiR and pKteiR100 produced 6.65 and 5.93 μg/mg of TeiR protein, respectively. Recombinant plasmids were also co-transformed into competent E. coli HB101 with plasmid p6 [containing hsdA gene (3α-HSD/CR, 3α-hydroxysteroid dehydrogenase/carbonyl reductase encoding gene)] to reveal the relationship between 3α-HSD/CR and TeiR by ELISA. The amounts of TeiR protein expressed by E. coli containing pKtac2-teiR and pKteiR100 were 5.94 μg/mg and 5.33 μg/mg, respectively, and these increased up to 6.81 μg/mg and 6.10 μg/mg after inducing with 1 mmol/l isopropyl-β-d-thiogalactoside (IPTG). Interestingly, 3α-HSD/CR protein expression level, after co-transformation with plasmids pKtac2-teiR and p6, was lower than that observed in the co-transformation with pKteiR100 and p6. The first co-transformation induced 1.20 μg/mg 3α-HSD/CR protein and the second 1.71 μg/mg. These values rose to 1.42 and 1.80 μg/mg, respectively, after treatment with 1 mmol/l IPTG. Our results proved that the tac promoter was more efficient than the lacZ promoter and that the teiR gene could act as an activator for hsdA gene expression.
Co-based brazing alloy CoFeNi(Si, B)CrTi was designed for SiC joining. The periodic banded reaction structure that existed at the interface between SiC and the traditional Ni-based or Co-based braze has been eliminated by the new brazing alloy. The maximum room-temperature four-point bend strength of 161 MPa was achieved for SiC/SiC joint under the optimum brazing condition of brazing filler thickness of 120 μm, brazing temperature of 1150 °C, and brazing time of 10 min. The corresponding reaction layer of the SiC/SiC joint is composed of multilayer silicides and TiC band, and many small TiC particles are scattered throughout the matrix of the central part of the joint. The joints thus exhibit stable high-temperature strength. It is believed that the formation of TiC in the joint contributes not only to the elimination of the periodic banded reaction structure, but also to the high joint strength and the high-temperature stability.
A simple and inexpensive method to modify the surface of a Ti3Al-based alloy, liquid-phase siliconizing and aluminizing by an Al-Si alloy, has been proposed. The surface modification at 1013 K for 10 min using Al-10 wt% Si melt resulted in a modified layer with a thickness of about 21 μm, composed of TiAl3 and TiSi2. The coating improved the isothermal oxidation resistance of the Ti3Al-based alloy at 1073 K. A continuous alumina-rich scale was formed at the outermost surface after oxidation. SiO2 was detectable in the oxide scale. The results of x-ray diffraction and x-ray energy dispersive spectrometer analysis showed that during oxidation, some of the TiSi2 in the coating was oxidized to SiO2. In the meantime, the TiSi2 was reduced to a lower silicide, Ti5Si4. The change of the surface microstructure after oxidation and the diffusion reaction between the coating and the Ti3Al substrate were also discussed.
The strain relaxation and the misfit dislocation density in micron size windows with different mask materials were studied. Experiments showed that the misfit dislocation density and the strain in the SiGe films would be affected not only by the size of the windows but the mask material. Experiments also showed that after annealing the SiGe films grown in the micron size windows would be much more stable than films grown in the large area on the same wafer.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.