We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to evaluate to what extent the different interval times between trophectoderm (TE) biopsy and vitrification influence the clinical outcomes in preimplantation genetic testing (PGT) cycles. Patients who underwent frozen embryo transfer (FET) after PGT between 2015 and 2019 were recruited. In total, 297 cycles with single day 5 euploid blastocyst transfer were included. These cycles were divided into three groups according to the interval times: <1 h group, 1–2 h group, and ≥2 h group. Blastocyst survival, clinical pregnancy, miscarriage, and ongoing pregnancy rates were compared. The results showed that, in PGT-SR cycles, survival rate in the ≥2 h group (96.72%) was significantly lower than in the <1 h group (100%, P = 0.047). The clinical pregnancy rate in the ≥2 h group was 55.93%, significantly lower than in the <1 h group (74.26%, P = 0.017). The ongoing pregnancy rates in the 1–2 h group and the ≥2 h group were 48.28% and 47.46%, respectively, significantly lower than that in the <1 h group (67.33%, P < 0.05). The miscarriage rate in the 1–2 h group was 18.42%, significantly higher than that in the <1 h group (5.33%, P = 0.027). In PGT-A cycles, the clinical pregnancy and ongoing pregnancy rates in the <1 h group were 67.44% and 53.49%, respectively, higher than that in the 1–2 h group (52.94%, 47.06%, P > 0.05) and the ≥2 h group (52.63%, 36.84%, P > 0.05). In conclusion, vitrification of blastocysts beyond 1 h after biopsy significantly influences embryo survival and clinical outcomes and is therefore not recommended.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
Laboratory experiments are conducted to investigate the mechanism controlling the formation of stable and unstable acoustic fountains at the free surface of a quiescent body of water. Fountains are induced by focused ultrasonic, a new modality that allows for better spatiotemporal control of water flow. Particle image velocimetry was used to characterize the induced flow field in the vicinity of the ultrasonic focal spot. We used two types of ultrasonic transducers with distinct wave frequencies. We examined three fountain formation regimes by varying the pressure level of the transducers, namely weak, intermediate (stable) and highly forced fountains (explosive). Between different regimes, the fountain height underwent a step-change in response to the increase in acoustic pressure. A force estimation obtained from the flow field shows that the magnitude of axial momentum flux is orders of magnitude lower than that of gravity and surface tension, indicating that the dominant driving force for the fountain generation is the acoustic radiation force (Nightingale et al., Ultrasound Med. Biol., vol. 28, 2002, pp. 227–235). We propose a simple model to estimate the shape of a stable fountain; it accounts for the applied acoustic pressure, gravity, surface tension and axial momentum. The model neglects viscous force, which precludes capturing the intermediate fountain surface curvature. However, the model successfully predicts the geometry of the weak and intermediate fountains.
Folate status for women during early pregnancy has been investigated, but data for women during mid-pregnancy, late pregnancy or lactation are sparse or lacking. Between May and July 2014, we conducted a cross-sectional study in 1211 pregnant and lactating women from three representative regions in China. Approximately 135 women were enrolled in each stratum by physiological periods (mid-pregnancy, late pregnancy or lactation) and regions (south, central or north). Plasma folate concentrations were measured by microbiological assay. The adjusted medians of folate concentration decreased from 28·8 (interquartile range (IQR) 19·9, 38·2) nmol/l in mid-pregnancy to 18·6 (IQR 13·2, 26·4) nmol/l in late pregnancy, and to 17·0 (IQR 12·3, 22·5) nmol/l in lactation (Pfor trend < 0·001). Overall, lower folate concentrations were more likely to be observed in women residing in the northern region, with younger age, higher pre-pregnancy BMI, lower education or multiparity, and in lactating women who had undergone a Caesarean delivery or who were breastfeeding exclusively. In total, 380 (31·4 %) women had a suboptimal folate status (folate concentration <13·5 nmol/l). Women in late pregnancy and lactating, residing in the northern region, having multiparity and low education level had a higher risk of suboptimal folate status, while those with older age had a lower risk. In conclusion, maternal plasma folate concentrations decreased as pregnancy progressed, and were influenced by geographic region and maternal socio-demographic characteristics. Future studies are warranted to assess the necessity of folic acid supplementation during later pregnancy and lactation especially for women at a higher risk of folate depletion.
The impact of diet on the metabolic syndrome (MetS) and CVD has been investigated widely, but few studies have investigated the association between dietary patterns (DP) and the predicted CVD, derived from reduced rank regression (RRR). The objectives of this study were to derive DP using RRR and principal component analysis (PCA) and investigate their associations with the MetS and estimated 10-year atherosclerotic CVD (ASCVD). We used the baseline dataset from the Xinjiang multi-ethnic cohort study in China, collected from June 2018 to May 2019. A total of 14 982 subjects aged 35–74 years from Urumqi, Huo Cheng and Mo Yu were included in the analysis. The 10-year ASCVD risk was estimated using the Chinese ASCVD risk equations. The associations of DP with the MetS and 10-year ASCVD were determined using multivariable logistic regression models. In Urumqi and Mo Yu, the increased RRR DP score was associated with a higher OR of having the MetS and with a higher OR of elevated 10-year ASCVD risk. However, only the first DP determined by PCA in Urumqi was inversely associated with the MetS and elevated 10-year ASCVD risk. The prevalence of the MetS and elevated ASCVD risk in urban population is higher than that in rural areas. Our results may help nutritionists develop more targeted dietary strategies to prevent the MetS and ASCVD in different regions in China.
The FNDC5 gene encodes the fibronectin type III domain-containing protein 5 that is a membrane protein mainly expressed in skeletal muscle, and the FNDC5 rs3480 polymorphism may be associated with liver disease severity in non-alcoholic fatty liver disease (NAFLD). We investigated the influence of the FNDC5 rs3480 polymorphism on the relationship between sarcopenia and the histological severity of NAFLD. A total of 370 adult individuals with biopsy-proven NAFLD were studied. The association between the key exposure sarcopenia and the outcome liver histological severity was investigated by binary logistic regression. Stratified analyses were undertaken to examine the impact of FNDC5 rs3480 polymorphism on the association between sarcopenia and the severity of NAFLD histology. Patients with sarcopenia had more severe histological grades of steatosis and a higher prevalence of significant fibrosis and definite non-alcoholic steatohepatitis than those without sarcopenia. There was a significant association between sarcopenia and significant fibrosis (adjusted OR 2·79, 95 % CI 1·31, 5·95, P = 0·008), independent of established risk factors and potential confounders. Among patients with sarcopenia, significant fibrosis occurred more frequently in the rs3480 AA genotype carriers than in those carrying the FNDC5 rs3480 G genotype (43·8 v. 17·2 %, P = 0·031). In the association between sarcopenia and liver fibrosis, there was a significant interaction between the FNDC5 genotype and sarcopenia status (P value for interaction = 0·006). Sarcopenia is independently associated with significant liver fibrosis, and the FNDC5 rs3480 G variant influences the association between sarcopenia and liver fibrosis in patients with biopsy-proven NAFLD.
A series of new synthetic armored cables were developed and tested to ensure that they were suitable for use with the RECoverable Autonomous Sonde (RECAS), which is a newly designed freezing-in thermal ice probe. The final version of the cable consists of two concentric conductors that can be used as the power and signal lines. Two polyfluoroalkoxy jackets are used for electrical insulation (one for insulation between conductors, and the other for insulation of the outer conductor). The outer insulation layer is coated by polyurethane jacket to seal the connections between the cable and electrical units. The 0.65 mm thick strength member is made from aramid fibers woven together. To hold these aramid fibers in place, a sheathing layer was produced from a polyamide fabric cover net. The outer diameter of the final version of the cable is ~6.1 mm. The permissible bending radius is as low as 17–20 mm. The maximal breaking force under straight tension is ~12.2 kN. The cable weight is only ~0.061 kg m−1. The mechanical and electrical properties and environmental suitability of the cable were determined through laboratory testing and joint testing with the probe.
The associations between sugar-sweetened beverage (SSB) and artificially sweetened beverage (ASB) consumption and the risk of metabolic syndrome (MetS) remain controversial. A quantitative assessment of dose–response associations has not been reported. This study aims to assess the associations between the risk of MetS and SSB, ASB, and total sweetened beverage (TSB, the combination of SSB and ASB) consumption by reviewing population-based epidemiological studies.
Design:
Meta-analysis.
Setting:
We searched PubMed, Embase and Web of Science databases prior to 4 November 2019, for relevant studies investigating the SSB–MetS and ASB–MetS associations. A random effects model was used to estimate pooled relative risks (RR) and 95 % CI. Dose–response association was assessed using a restricted cubic splines model.
Participants:
We identified seventeen articles (twenty-four studies, including 93 095 participants and 20 749 MetS patients).
Results:
The pooled RR for the risk of MetS were 1·51 (95 % CI 1·34, 1·69), 1·56 (1·32, 1·83) and 1·44 (1·19, 1·75) in high consumption group of TSB, SSB and ASB, respectively; and 1·20 (1·13, 1·28), 1·19 (1·11, 1·28) and 1·31 (1·05, 1·65) per 250 ml/d increase in TSB, SSB and ASB consumption, respectively. Additionally, we found evidence of non-linear, TSB–MetS and SSB–MetS dose–response associations and a linear ASB–MetS dose–response association.
Conclusions:
TSB, SSB and ASB consumption was associated with the risk of MetS. The present findings provide evidence that supports reducing intake of these beverages to lower the TSB-, SSB- and ASB-related risk of MetS.
A growing body of studies in wall-bounded turbulence has shown that the generation of wall-shear stress fluctuations is directly connected with outer-layer large-scale motions. In the present study, we investigate the scale-based structures of the streamwise wall-shear stress fluctuations (
$\tau _x'$
) in turbulent channel flows at different Reynolds numbers. The wall-shear stress structures are identified using a two-dimensional clustering methodology, and two indispensable factors, scale and sign, are considered for the analysis. The structures are classified into positive and negative families according to the sign of
$\tau _x'$
. The statistical properties of the structures, including geometrical characteristics, spatial distribution, population density, fluctuating intensity, and correlations with outer motions are comprehensively investigated. Particular attention is paid to the asymmetries between positive and negative structures and their connection with wall-attached energy-containing eddies. In virtue of our results, only the large-scale structures of negative
$\tau _x'$
contain the footprints of the inactive part of wall-attached eddies populating the logarithmic region.
The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a public health emergency of international concern. The current study aims to explore whether the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are associated with the development of death in patients with COVID-19. A total of 131 patients diagnosed with COVID-19 from 13 February 2020 to 14 March 2020 in a hospital in Wuhan designated for treating COVID-19 were enrolled in the current study. These 131 patients had a median age of 64 years old (interquartile range: 56–71 years old). Furthermore, among these patients, 111 (91.8%) patients were discharged and 12 (9.2%) patients died in the hospital. The pooled analysis revealed that the NLR at admission was significantly elevated for non-survivors, when compared to survivors (P < 0.001). The NLR of 3.338 was associated with all-cause mortality, with a sensitivity of 100.0% and a specificity of 84.0% (area under the curve (AUC): 0.963, 95% confidence interval (CI) 0.911–1.000; P < 0.001). In view of the small number of deaths (n = 12) in the current study, NLR of 2.306 might have potential value for helping clinicians to identify patients with severe COVID-19, with a sensitivity of 100.0% and a specificity of 56.7% (AUC: 0.729, 95% CI 0.563–0.892; P = 0.063). The NLR was significantly associated with the development of death in patients with COVID-19. Hence, NLR is a useful biomarker to predict the all-cause mortality of COVID-19.
No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment.
Methods
This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance.
Results
Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6).
Conclusion
Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.
The Antarctic subglacial drilling rig (ASDR) is designed to recover 105 mm-diameter ice cores up to 1400 m depth and 41.5 mm-diameter bedrock cores up to 2 m in length. In order to ensure safe and convenient drilling, drilling auxiliaries are designed to support fieldwork and servicing. These auxiliaries are subdivided into several systems for power supply, drill tripping in the borehole, ice core and chip processing, and drill servicing and maintenance. The required equipment also includes two generators, a drilling winch with a cable, logging winch with a cable, control desk, pipe handler with a fixed clamp, chip chamber vibrator, centrifuge, emergency devices and fitting and electrical tools. Additionally, several environmental protective measures such as a new liquid-tight casing with a thermal casing shoe and a bailing device for recovering drilling fluid from the borehole were designed. Most of the auxiliaries were tested during the summer of 2018–2019 near Zhongshan Station, East Antarctica while drilling to the bedrock to a depth of 198 m.
The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of > 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (> 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.
A new, modified version of the cable-suspended Ice and Bedrock Electromechanical Drill (IBED) was designed for drilling in firn, ice, debris-rich ice and rock. The upper part of the drill is almost the same for all drill variants and comprises four sections: cable termination, a slip-ring section, an antitorque system and an electronic pressure chamber. The lower part of the IBED comprises an auger core barrel, reamers, a core barrel for ice/debris-ice drilling and a conventional geological single-tube core barrel or custom-made double-tube core barrel. First, the short and full-scale field versions of the IBED were tested at an outdoor testing stand and a testing facility with a 12.5 m-deep ice well. Then, in the 2018–2019 summer season, the IBED was tested in the field at a site ~12 km south of Zhongshan Station, East Antarctica, and a ~6 cm bedrock core was recovered from a 198 m-deep borehole. A total of 18 d was required to penetrate the ice sheet. The retrieved core samples of blue ice, basal ice and bedrock provided valuable information regarding the Earth's paleo-environment.
In many cases, the efficiency and safety of a drilling project depend on the reliability of the electrical and electronic control system, as the process progresses without visual access of the operator. The electrical and electronic system provides and regulates the power supply for the drill, collects and monitors the drill data during the whole operating process, and sends and receives the control instructions and feedback signals. The entire system is composed of the surface, borehole and software subsystems. The surface subsystem serves for operating the drilling process, transmitting the drilling and environmental data, and supplying power for the drill motor and downhole control system. The borehole subsystem is generally intended for borehole data acquisition, drill motor control, power regulation and communication. The software subsystem is designed for human–computer interaction, data processing and storage, and programming of signal acquisition and transmission of data. The control system of Antarctic subglacial drilling rig was tested during the 2018–2019 summer season near Zhongshan Station, East Antarctica, in the course of drilling to the bedrock at a depth of 198 m. It exhibited a steady and efficient performance without significant system failures.
Parakmeria omeiensis is a Critically Endangered tree species in the family Magnoliaceae, endemic to south-west China. The tree is functionally dioecious, but little is known about the species’ status in the wild. We investigated the range, population size, age structure, habitat characteristics and threats to P. omeiensis. We located a total of 74 individuals in two populations on the steep slopes of Mount Emei, Sichuan province, growing under the canopy of evergreen broadleaved forest in well-drained gravel soil. A male-biased sex ratio, lack of effective pollinating insects, and habitat destruction result in low seed set and poor seedling survival in the wild. We have adopted an integrated conservation approach, including strengthening in situ conservation, cultivation of saplings, ex situ conservation and reintroduction, to protect this species. The successful conservation of P. omeiensis has important implications for the conservation of the genus Parakmeria and the family Magnoliaceae.
Fluorescent quantum dots (QDs) modified with polyethylene glycol (PEG) and albumin bovine serum (BSA) have profound application in the detection and treatment of hepatocellular carcinoma (HCC) cells. In the present study, the effects and mechanism of PEG and BSA modification on the cytotoxicity of QDs have been explored. It was found that the diameter of the as-prepared QDs, PEG@QDs, BSA@QDs is 3–5 nm, 4–5 nm, and 4–6 nm, respectively. With increase of the treatment time from 0 to 24 h, the HCC cell viability treated with QDs, PEG@QDs, and BSA@QDs obviously decreases, showing a certain time-dependent manner. When the concentration of several nanomaterials is increased from 10 to 90 nM, the cell viability decreases accordingly, exhibiting a certain concentration-dependent manner. Under the same concentration change conditions, the reactive oxygen species contents of cells treated by QDs, PEG@QDs, and BSA@QDs also rise from 7.9 × 103, 6.7 × 103, and 4.7 × 103 to 13.2 × 103, 14.3 × 103, and 12.3 × 103, respectively. In these processes, superoxide dismutase does not play a major role. This study provides strong foundation and useful guidance for QD applications in the diagnosis and treatment of HCC.
Primary liver cancer is the third leading cause of cancer-related death worldwide. Most patients are diagnosed at late stages with poor prognosis; thus, identification of modifiable risk factors for primary prevention of liver cancer is urgently needed. The well-established risk factors of liver cancer include chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), heavy alcohol consumption, metabolic diseases such as obesity and diabetes, and aflatoxin exposure. However, a large proportion of cancer cases worldwide cannot be explained by current known risk factors. Dietary factors have been suspected as important, but dietary aetiology of liver cancer remains poorly understood. In this review, we summarised and evaluated the observational studies of diet including single nutrients, food and food groups, as well as dietary patterns with the risk of developing liver cancer. Although there are large knowledge gaps between diet and liver cancer risk, current epidemiological evidence supports an important role of diet in liver cancer development. For example, exposure to aflatoxin, heavy alcohol drinking and possibly dairy product (not including yogurt) intake increase, while intake of coffee, fish and tea, light-to-moderate alcohol drinking and several healthy dietary patterns (e.g. Alternative Healthy Eating Index) may decrease liver cancer risk. Future studies with large sample size and accurate diet measurement are warranted and need to consider issues such as the possible aetiological heterogeneity between liver cancer subtypes, the influence of chronic HBV or HCV infection, the high-risk populations (e.g. cirrhosis) and a potential interplay with host gut microbiota or genetic variations.
A growing body of studies supports the existence of Townsend’s wall-attached eddies in wall turbulence under the condition of sufficiently high Reynolds numbers. In the present work, we uncover the signature of Townsend’s wall-attached eddies in low-Reynolds-number wall turbulence. To this end, we use a three-dimensional clustering methodology to identify the wall-attached structures of intense streamwise and spanwise velocity fluctuations in turbulent channel flows at four Reynolds numbers (
$Re_{\unicode[STIX]{x1D70F}}=186$
, 358, 547 and 934). The statistical properties of the structures, such as their geometric self-similarity, population density and statistical moments, are investigated and compared with the predictions of the attached-eddy model. Particular attention is paid to the asymmetries between high- and low-speed wall-attached streaky structures, and we show that the former are a closer representation of the wall-attached eddies. This observation is ascribed to the differences between the sweep and ejection events associated with the streaks. We also examine the Reynolds-number effects on the statistical properties of the structures, and find that the signature of attached eddies can be observed within the Reynolds-number range under scrutiny. Our approach paves the way to cost-efficient model development and flow prediction using computationally more affordable simulations at low Reynolds numbers.