We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present study aimed to develop neuropsychological norms for older Asian Americans with English as a primary or secondary language, using data from the National Alzheimer’s Coordinating Center (NACC).
Method:
A normative sample of Asian American participants was derived from the NACC database using robust criteria: participants were cognitively unimpaired at baseline (i.e., no MCI or dementia) and remained cognitively unimpaired at 1-year follow-up. Clinical and demographic characteristics were compared between Primary and Secondary English speakers using analyses of variance for continuous measures and chi-square tests for categorical variables. Linear regression models compared neuropsychological performance between the groups, adjusting for demographics (age, sex, and education). Regression models were developed for clinical application to compute demographically adjusted z-scores.
Results:
Secondary English speakers were younger than Primary English speakers (p < .001). There were significant differences between the groups on measures of mental status (Mini-Mental State Examination, p = .002), attention (Trail Making Test A, Digit Span Forward Total Score, p <.001), language (Boston Naming Test, Animal Fluency, Vegetable Fluency, p < .001), and executive function (Trail Making Test B, p = .02).
Conclusions:
Separate normative data are needed for Primary vs. Secondary English speakers from Asian American backgrounds. We provide normative data on older Asian Americans to enable clinicians to account for English use in the interpretation of neuropsychological assessment scores.
Aggregation of phosphorylated tau (pTau) is a hallmark feature of Alzheimer’s disease (AD). Novel assays now allow pTau to be measured in plasma. Elevated plasma pTau predicts subsequent development of AD, cortical atrophy and AD-related pathologies in the brain. We aimed to determine whether elevated pTau is associated with cognitive functioning in older adults prior to the development of dementia.
Participants and Methods:
Independently living older adults (N = 48, mean age = 70.0 years; SD = 7.7; age range 55-88 years; 35.4% male) free of dementia or clinical stroke were recruited from the community and underwent blood draw and neuropsychological assessment. Plasma was assayed using the Quanterix Simoa® pTau-181 V2 Advantage Kit to quantify pTau-181 levels and APOE genotyping was conducted on the blood cell pellet fraction obtained from plasma separation. Global cognition was assessed using the Dementia Rating Scale-2 (DRS-2) and executive function was assessed using the Stroop, D-KEFS-2 Fluency, and Trails Making Test. Diagnosis of mild cognitive impairment (MCI) was determined based on overall neuropsychological performance. Participants were diagnosed as MCI if they scored >1 SD below norm-referenced values on 2 or more tests within a domain (language, executive, memory) or on 3 tests across domains.
Results:
Multiple linear regression analysis revealed a significant negative association between plasma pTau-181 levels and DRS-2 (B = -2.57, 95% CI (-3.68, -1.47), p <.001), Stroop Color-Word score (B = -2.64, 95% CI (-4.56, - 0.71), p = .009) and Fruits and Vegetables Fluency (B = -1.67, 95% CI (-2.84, -0.49), p = .007), adjusting for age, sex, education and APOE4 status. MCI diagnosis was determined for 43 participants, of which 8 (18.6%) met criteria. Logistic regression analysis revealed that pTau-181 levels are associated with increased odds of MCI diagnosis (OR = 2.18, 95% CI (1.01, 4.68), p = .046), after accounting for age, sex, education and APOE4 status.
Conclusions:
Elevated plasma pTau-181 is associated with worse cognition, particularly executive function, and predicts MCI diagnosis in older adults. Higher plasma pTau-181 was associated with increased odds of MCI diagnosis. Detection of pTau-181 in plasma allows a novel, non-invasive method to detect burden of one form of AD pathology. These findings lend support to the use of plasma pTau-181 as a valuable marker in detecting even early cognitive changes prior to the development of AD. Additional longitudinal studies are warranted to explore the prognostic value of plasma pTau-181 over time.
The locus coeruleus (LC) innervates the cerebrovasculature and plays a crucial role in optimal regulation of cerebral blood flow. However, no human studies to date have examined links between these systems with widely available neuroimaging methods. We quantified associations between LC structural integrity and regional cortical perfusion and probed whether varying levels of plasma Alzheimer’s disease (AD) biomarkers (Aß42/40 ratio and ptau181) moderated these relationships.
Participants and Methods:
64 dementia-free community-dwelling older adults (ages 55-87) recruited across two studies underwent structural and functional neuroimaging on the same MRI scanner. 3D-pCASL MRI measured regional cerebral blood flow in limbic and frontal cortical regions, while T1-FSE MRI quantified rostral LC-MRI contrast, a well-established proxy measure of LC structural integrity. A subset of participants underwent fasting blood draw to measure plasma AD biomarker concentrations (Aß42/40 ratio and ptau181). Multiple linear regression models examined associations between perfusion and LC integrity, with rostral LC-MRI contrast as predictor, regional CBF as outcome, and age and study as covariates. Moderation analyses included additional terms for plasma AD biomarker concentration and plasma x LC interaction.
Results:
Greater rostral LC-MRI contrast was linked to lower regional perfusion in limbic regions, such as the amygdala (ß = -0.25, p = 0.049) and entorhinal cortex (ß = -0.20, p = 0.042), but was linked to higher regional perfusion in frontal cortical regions, such as the lateral (ß = 0.28, p = 0.003) and medial (ß = 0.24, p = 0.05) orbitofrontal (OFC) cortices. Plasma amyloid levels moderated the relationship between rostral LC and amygdala CBF (Aß42/40 ratio x rostral LC interaction term ß = -0.31, p = 0.021), such that as plasma Aß42/40 ratio decreased (i.e., greater pathology), the strength of the negative relationship between rostral LC integrity and amygdala perfusion decreased. Plasma ptau181levels moderated the relationship between rostral LC and entorhinal CBF (ptau181 x rostral LC interaction term ß = 0.64, p = 0.001), such that as ptau181 increased (i.e., greater pathology), the strength of the negative relationship between rostral LC integrity and entorhinal perfusion decreased. For frontal cortical regions, ptau181 levels moderated the relationship between rostral LC and lateral OFC perfusion (ptau181 x rostral LC interaction term ß = -0.54, p = .004), as well as between rostral LC and medial OFC perfusion (ptau181 x rostral LC interaction term ß = -0.53, p = .005), such that as ptau181 increased (i.e., greater pathology), the strength of the positive relationship between rostral LC integrity and frontal perfusion decreased.
Conclusions:
LC integrity is linked to regional cortical perfusion in non-demented older adults, and these relationships are moderated by plasma AD biomarker concentrations. Variable directionality of the associations between the LC and frontal versus limbic perfusion, as well as the differential moderating effects of plasma AD biomarkers, may signify a compensatory mechanism and a shifting pattern of hyperemia in the presence of aggregating AD pathology. Linking LC integrity and cerebrovascular regulation may represent an important understudied pathway of dementia risk and may help to bridge competing theories of dementia progression in preclinical AD studies.
Blood pressure variability (BPV), independent of traditionally targeted average blood pressure levels, is an emerging vascular risk factor for stroke, cerebrovascular disease, and dementia, possibly through links with vascular-endothelial injury. Recent evidence suggests visit-to-visit (e.g., over months, years) BPV is associated with cerebrovascular disease severity, but less is known about relationships with short-term (e.g., < 24 hours) fluctuations in blood pressure. Additionally, it is unclear how BPV may be related to angiogenic growth factors that play a role in cerebral arterial health.
Participants and Methods:
We investigated relationships between short-term BPV, white matter hyperintensities on MRI, and levels of plasma vascular endothelial growth factor (VEGF) in a sample of community-dwelling older adults (n = 57, ages 55-88) without history of dementia or stroke. Blood pressure was collected continuously during a 5-minute resting period. BPV was calculated as variability independent of mean, a commonly used index of BPV uncorrelated with average blood pressure levels. Participants underwent T2-FLAIR MRI to determine severity of white matter lesion burden. Severity of lesions was classified as Fazekas scores (0-3). Participants also underwent venipuncture to determine levels of plasma VEGF. Ordinal logistic regression examined the association between BPV and Fazekas scores. Multiple linear regression explored relationships between BPV and VEGF. Models controlled for age, sex, and average blood pressure.
Results:
Elevated BPV was related to greater white matter lesion burden (i.e., Fazekas score) (systolic: OR = 1.17 [95% CI 1.01, 1.37]; p = .04; diastolic: OR = 2.47 [95% CI 1.09, 5.90]; p = .03) and increased levels of plasma VEGF (systolic: ß = .39 [95% CI .11, .67]; adjusted R2 = .16; p = .007; diastolic: ß = .48 [95% CI .18, .78]; adjusted R2 = .18; p = .003).
Conclusions:
Findings suggest short-term BPV may be related to cerebrovascular disease burden and angiogenic growth factors relevant to cerebral arterial health, independent of average blood pressure. Understanding the role of BPV in cerebrovascular disease and vascular-endothelial health may help elucidate the increased risk for stroke and dementia associated with elevated BPV.
Brain ageing, the primary risk factor for cognitive impairment, occurs because of the accumulation of age-related neuropathologies. Identifying effective nutrients that increase cognitive function may help maintain brain health. Tomatoes and lemons have various bioactive functions and exert protective effects against oxidative stress, ageing and cancer. Moreover, they have been shown to enhance cognitive function. In the present study, we aimed to investigate the effects of tomato and lemon ethanolic extracts (TEE and LEE, respectively) and their possible synergistic effects on the enhancement of cognitive function and neurogenesis in aged mice. The molecular mechanisms underlying the synergistic effect of TEE and LEE were investigated. For the in vivo experiment, TEE, LEE or their mixture was orally administered to 12-month-old mice for 9 weeks. A single administration of either TEE or LEE improved cognitive function and neurogenesis in aged mice to some extent, as determined using the novel object recognition test and doublecortin immunohistochemical staining, respectively. However, a significant enhancement of cognitive function and neurogenesis in aged mice was observed after the administration of the TEE + LEE mixture, which had a synergistic effect. N-methyl-d-aspartate receptor 2B, postsynaptic density protein 95, and brain-derived neurotrophic factor (BDNF) levels and tropomyosin receptor kinase B (TrkB)/extracellular signal-regulated kinase (ERK) phosphorylation also synergistically increased after the administration of the mixture compared with those in the individual treatments. In conclusion, compared with their separate treatments, treatment with the TEE + LEE mixture synergistically improved the cognitive function, neurogenesis and synaptic plasticity in aged mice via the BDNF/TrkB/ERK signalling pathway.
Blood carotenoid concentration measurement is considered the gold standard for fruit and vegetable (F&V) intake estimation; however, this method is invasive and expensive. Recently, skin carotenoid status (SCS) measured by optical sensors has been evaluated as a promising parameter for F&V intake estimation. In this cross-sectional study, we aimed to validate the utility of resonance Raman spectroscopy (RRS)-assessed SCS as a biomarker of F&V intake in Korean adults. We used data from 108 participants aged 20–69 years who completed SCS measurements, blood collection and 3-d dietary recordings. Serum carotenoid concentrations were quantified using HPLC, and dietary carotenoid and F&V intakes were estimated via 3-d dietary records using a carotenoid database for common Korean foods. The correlations of the SCS with serum carotenoid concentrations, dietary carotenoid intake and F&V intake were examined to assess SCS validity. SCS was positively correlated with total serum carotenoid concentration (r = 0·52, 95 % CI = 0·36, 0·64, P < 0·001), serum β-carotene concentration (r = 0·60, 95 % CI = 0·47, 0·71, P < 0·001), total carotenoid intake (r = 0·20, 95 % CI = 0·01, 0·37, P = 0·04), β-carotene intake (r = 0·30, 95 % CI = 0·11, 0·46, P = 0·002) and F&V intake (r = 0·40, 95 % CI = 0·23, 0·55, P < 0·001). These results suggest that SCS can be a valid biomarker of F&V intake in Korean adults.
South Korea has been faced with a widening economic gender gap during the recent Covid-19 pandemic. To inform discussion of Korean women’s future following the pandemic, this article explores the country’s history of women’s empowerment. It identifies cultural, educational, economic, and political changes, and their long-term effects on women’s role and status. The analysis is based on data collected from Korea’s national statistical database and a review of relevant literature. Findings inform policy directions for advancing women’s economic empowerment in Korea and other countries following a similar development path and contribute to expanding our understanding of the factors and relations influencing women’s empowerment.
Carbon-supported nanoparticles have been used widely as efficient catalysts due to their enhanced surface-to-volume ratio. To investigate their structure–property relationships, acquiring 3D elemental distribution is required. Here, carbon-supported Pt, PtMn alloy, and ordered Pt3Mn nanoparticles are synthesized and analyzed with atom probe tomography as model systems. A significant difference of Mn distribution after the heat-treatment was found. Finally, the field evaporation behavior of the carbon support was discussed and each acquired reconstruction was compared with computational results from an evaporation simulation. This paper provides a guideline for studies using atom probe tomography on the heterogeneous carbon-supported nanoparticle system that leads to insights toward a wide variety of applications.
With the growth of chatbots, concerns about implementing artificial intelligence (AI) chatbots in educational settings have consistently arisen, especially for the purpose of language learning. This study introduced a task-based voice chatbot called “Ellie”, newly developed by the researchers, and examined the appropriateness of its task design and performance as an English conversation partner and students’ perceptions on using it in EFL class. Korean EFL learners (N = 314) aged 10–15 years performed three speaking tasks with Ellie in their school classroom. The participants took 9.63 turns per session on average using the first 1,000-word band, indicating that the chatbot highly encouraged students to engage in conversation, which rarely occurs in general EFL classes in Korea. The high task success rates (88.3%) showed the design appropriateness of both L2 tasks and operational intents in terms of users’ successful understanding and completeness of the given chatbot tasks. The participants’ responses to the survey not only supported the positive potential of the chatbot in EFL settings but also revealed limitations to be resolved. Future suggestions for advancing and implementing AI chatbots in EFL classrooms are discussed.
This paper presents a modularized autonomous pipeline inspection robot called MRINSPECT VII+, which we recently developed. MRINSPECT VII+ is aimed at inspect in-service urban gas pipelines with a diameter of 200 mm. The robot consists of five basic modules: driving, sensing, joint, and battery modules. For nondestructive testing (NDT), an NDT module can be added to the system. The driving module uses a multiaxial differential gear mechanism to provide traction forces to the robot. The sensor module recognizes the pipeline element using position-sensitive detector (PSD) sensors and a CCD camera. The control module contains a computing unit and manages the robot’s autonomous navigation. The battery module supplies power to the system. Each module is connected via backdrivable active joint modules, which provide flexibility while moving inside narrow pipelines. Additionally, the wireless communication module helps the system communicate with the ground station. We tested MRINSPECT VII+ in real pipeline environments and validated its feasibility successfully.
It has been well known that air pollution and sleep deprivation individually have impacts on human health; however, the association between the two has not been well researched. The aim of this study was to investigate this relationship at a community level.
Methods
We collected sleep outcomes from the Korean Community Health Survey between years of 2008 and 2016. The data contained 1 130 080 selected adults aged ⩾ 19 years, from 141 communities. As sleep outcomes, annual chronic sleep deprivation (% of people who sleep ⩽ 5 h per day on average) and average values of daily mean sleep duration were used. Community-specific annual averages of particulate matter with a diameter ⩽ 10 μm (PM10), nitrogen dioxide (NO2) and carbon monoxide (CO) were collected and then applied to a linear mixed effects model to estimate the association between air pollution over the past 4 years and sleep outcomes. Population density, green space, health behaviour, and gross regional domestic product per capita variables were considered as confounders in all mixed effect models.
Results
From the linear mixed effect models, we found that the chronic sleep deprivation % was positively associated with PM10 (0.33% increase with 95% CI 0.05–0.60; per 10 μg/m3) and NO2 (0.68% with 95% CI 0.44–0.92; per 10 ppm). Higher PM10 and NO2 were also associated with shorter sleep duration, with a reduction of 0.37 min (95% CI −0.33 to 1.07 min; per 10 μg/m3) and 2.09 min (95% CI 1.50–2.68 min; per 10 ppm), respectively. The associations between PM10 and sleep outcomes were higher in females than males and in the older age groups (⩾ 60-years) than in younger age groups (19–39 and 40–59 years). However, the association between NO2 and sleep outcomes were more higher in males than in females and in the younger age groups (19–39 years) than other age groups.
Conclusions
Our findings provide epidemiological evidence that long-term interventions to reduce air pollutions are anticipated to provide improvements in sleep deficiency.
Two advanced, automated crystal orientation mapping techniques suited for nanocrystalline materials—precession electron diffraction (PED) in transmission electron microscopy (TEM) and on-axis transmission Kikuchi diffraction (TKD) in scanning electron microscopy (SEM)—are evaluated by comparing the orientation maps obtained from the identical location on a 30 nm-thick nanocrystalline tungsten (W) thin film. A side-by-side comparison of the orientation maps directly showed that the large-scale orientation features are almost identical. However, there are differences in the fine details, which arise from the fundamentally different nature of the spot pattern and Kikuchi line pattern in terms of the excitation volume and the angular resolution. While TEM-PED is more reliable to characterize grains oriented along low-index zone axes, the high angular resolution of SEM-TKD allows the detection of small misorientation between grains and thus yields better quantification and statistical analysis of grain orientation. Given that both TEM-PED and SEM-TKD orientation mapping techniques are complementary tools for nanocrystalline materials, one can be favorably selected depending on the requirements of the analysis, as they have competitive performance in terms of angular resolution and texture quantification.
A disaster in the hospital is particularly serious and quite different from other ordinary disasters. This study aimed at analyzing the activity outcomes of a disaster medical assistance team (DMAT) for a fire disaster at the hospital.
Methods:
The data which was documented by a DMAT and emergent medical technicians of a fire department contained information about the patient’s characteristics, medical records, triage results, and the hospital which the patient was transferred from. Patients were categorized into four groups according to results of field triage using the simple triage and rapid treatment method.
Results:
DMAT arrived on the scene in 37 minutes. One hundred and thirty eight (138) patients were evacuated from the disaster scene. There were 25 patients (18.1%) in the Red group, 96 patients (69.6%) in the Yellow group, and 1 patient (0.7%) in the Green group. One patient died. There were 16 (11.6%) medical staff and hospital employees. The injury of the caregiver or the medical staff was more severe compared to the family protector.
Conclusions:
For an effective disaster-response system in hospital disasters, it is important to secure the safety of medical staff, to utilize available medical resources, to secure patients’ medical records, and to reorganize the DMAT dispatch system.
We analysed optimal nutrient levels using linear programming (LP) to reveal nutritional shortcomings of Korean dine-out meals and to stress the importance of fruits and dairy products for maintaining a healthy diet.
Design
LP models that minimize deviation from recommended nutrient values were formulated to analyse deficiency or excess of nutrients under the best situation.
Setting
Korean dine-out menus and nutritional information were taken from the nutrient composition tables for dine-out menus developed by the Ministry of Food and Drug Safety and the nutrient database from Computerized Analysis Program. Acceptable macronutrient distribution ranges of macronutrients such as carbohydrate, protein and fat, and recommended intake levels for energy, vitamins, minerals and cholesterol, by sex, were based on the Dietary Reference Intake for Koreans aged 30–49 years.
Participants
Optimization was performed on selecting the optimal Korean meal combination.
Results
LP optimization models showed that it is unlikely to satisfy all nutrient recommendations with any combination of dine-out menus. Specifically, meal combinations of Korean dine-out menus had high levels of Na and cholesterol and low levels of vitamins and minerals. Four formulations were considered to compare the effects of controlling Na and including fruit and dairy products. The unbalanced diet was resolved with extra consumption of fruits and dairy products.
Conclusions
The best meal combination in dine-out menus, even though the proportion and pairing of menus may be unrealistic, is not healthy, and thus one should consume fruits and dairy products to maintain a balanced diet.
In this study, we used a data-mining approach to identify hidden groups in a corpus-based second-language (L2) vocabulary experiment. After a vocabulary pre-test, a total of 132 participants performed three online reading tasks (in random orders) equipped with the following glossary types: (1) concordance lines and definitions of target lexical items, (2) concordance lines of target lexical items, and (3) no glossary information. Although the results of a previous study based on variable-centred analysis (i.e. multiple regression analysis) revealed that more glossary information could lead to better learning outcomes (Lee, Warschauer & Lee, 2017), using a model-based clustering technique in the present study allowed us to unearth learner types not identified in the previous analysis. Instead of the performance pattern found in the previous study (more glossary led to higher gains), we identified one learner group who exhibited their ability to make successful use of concordance lines (and thus are optimized for data-driven learning, or DDL; Johns, 1991), and another group who showed limited L2 vocabulary learning when exposed to concordance lines only. Further, our results revealed that L2 proficiency intersects with vocabulary gains of different learner types in complex ways. Therefore, using this technique in computer-assisted language learning (CALL) research to understand differential effects of accommodations can help us better identify hidden learner types and provide personalized CALL instruction.
Bismuth vanadate (BiVO4) is regarded as a viable material for water oxidation due to various benefits such as visible light absorption, low production cost, and resistance to photocorrosion. Recently, numerous attempts have been adopted to improve the performance of BiVO4. In this work, we highlight the important strategies that have been made for improving the performance of the photoanode material, such as fabricating nanostructured electrode, controlling reacting facet, stacking with other materials, utilizing plasmonics, loading co-catalyst, and controlling the interfacial band bending with ferroelectrics. Taking advantage of the strategies, highly efficient BiVO4 photoelectrodes could be demonstrated. Finally, we discuss the perspective of BiVO4-based photoanodes.
We demonstrate the tungsten disulfide (WS2) thin film catalysts prepared by the sulfurization of vacuum deposited WO3 thin films for efficient hydrogen production with over 90% Faradaic efficiency. The 23-nm-thick WS2 thin film catalyst heterojunction with p-type silicon photocathode could exhibit a photocurrent density of 8.3 mA/cm2 at 0 V versus a reversible hydrogen electrode (RHE), a low onset potential of 0.2 V versus RHE when photocurrent density reaches −1 mA/cm2 and long-term stability over 10 h. The enhanced catalytic activities of WS2/p-Si photocathodes compared with the bare p-Si photocathode originate from a number of edge sites in the synthesized polycrystalline thin films, which could act as hydrogen evolution catalyst.
Stable carbon isotope ratios were measured on the alpha-cellulose in tree rings of a pine tree (Pinus densiflora) from Yeongwol, Korea. We developed an annual-resolution δ13C series (1835–1905) by correcting the measured data for changes in δ13C of air to minimize non-climatic influences. To investigate the climatic signal in the δ13C series, we performed correlation analysis between δ13C and the Cheugugi climate data. The Cheugugi precipitation data were first recorded by King Sejong (1397–1450) of the Joseon Dynasty. However, the longest set of precipitation data available is the one collected in Seoul (1776–1907). Although many studies support the reliability of the Cheugugi data, no previous studies have investigated the potential of the δ13C signal in tree rings as paleoclimate proxy using the Cheugugi data. Recent precipitation trends in Yeongwol are quite similar to that of Seoul, and we found significant correlations between the Cheugugi data and the δ13C series. We suggest further studies to replicate these results and confirm whether comparing δ13C variations in tree rings and Cheugugi data is a useful method of investigating the potential of the δ13C signal as a paleoclimate proxy in or near the Korean peninsula.
The National Institute of Neurological Disease and Stroke-Canadian Stroke Network (NINDS-CSN) 5-minute neuropsychology protocol consists of only verbal tasks, and is proposed as a brief screening method for vascular cognitive impairment. We evaluated its feasibility within two weeks after stroke and ability to predict the development of post-stroke dementia (PSD) at 3 months after stroke.
Method:
We prospectively enrolled subjects with ischemic stroke within seven days of symptom onset who were consecutively admitted to 12 university hospitals. Neuropsychological assessments using the NINDS-CSN 5-minute and 60-minute neuropsychology protocols were administered within two weeks and at 3 months after stroke onset, respectively. PSD was diagnosed with reference to the American Heart Association/American Stroke Association statement, requiring deficits in at least two cognitive domains.
Results:
Of 620 patients, 512 (82.6%) were feasible for the NINDS-CSN 5-minute protocol within two weeks after stroke. The incidence of PSD was 16.2% in 308 subjects who had completed follow-up at 3 months after stroke onset. The total score of the NINDS-CSN 5-minute protocol differed significantly between those with and without PSD (4.0 ± 2.7, 7.4 ± 2.7, respectively; p < 0.01). A cut-off value of 6/7 showed reasonable discriminative power (sensitivity 0.82, specificity 0.67, AUC 0.74). The NINDS-CSN 5-minute protocol score was a significant predictor for PSD (adjusted odds ratio 6.32, 95% CI 2.65–15.05).
Discussion:
The NINDS-CSN 5-minute protocol is feasible to evaluate cognitive functions in patients with acute ischemic stroke. It might be a useful screening method for early identification of high-risk groups for PSD.
Core A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula.