We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of
$\mathcal{R}_{\mathrm{HI}} \sim 1.04$
) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities.
The anabolic effects of androgen on skeletal muscles are thought to be mediated by androgen receptor (AR). Although multiple studies concerning the effects of AR in males have been performed, the molecular mechanisms of AR in skeletal muscles remain unclear. Here we first confirmed that satellite cells from mouse hindlimb muscles express AR. We then generated satellite cell-specific AR knockout mice using Pax7CreERT2 and ARL2/Y mice to test whether AR in satellite cells is necessary for muscle regeneration. Surprisingly, we found that muscle regeneration was compromised in both Pax7CreERT2(Fan)/+ control mice and Pax7CreERT2(Fan)/+;ARL2/Y mice compared to ARL2/Y mice. However, Pax7CreERT2(Gaka)/+;ARL2/Y;R26tdTomato/+ mice showed no significant differences between control and mutant muscle regeneration. These findings indicate that AR in satellite cells is not essential for muscle regeneration. We propose that Pax7CreERT2(Fan)/+ control mice should be included in all experiments, because these mice negatively affect the muscle regeneration and show the mild regeneration phenotype.
To examine associations between protein intake per day and at different meals and skeletal muscle mass declines.
Design:
Two-year prospective cohort study among older community dwellers.
Setting:
National Institute for Longevity Sciences–Longitudinal Study of Aging (NILS-LSA) in Japan.
Participants:
Older men (n 292) and women (n 363) aged 60–87 years who participated in the baseline (2006–2008) and follow-up studies (2008–2010) of NILS-LSA and did not exhibit low skeletal muscle mass at baseline. Muscle mass was assessed using dual-energy X-ray absorptiometry at baseline and follow-up. Low muscle mass was defined as skeletal muscle mass index <7·0 kg/m2 for men and <5·4 kg/m2 for women at follow-up. Daily protein intake and protein intake at each meal were calculated from 3 d dietary records at baseline and sex-stratified tertiles were determined.
Results:
Mean (sd) protein intake at breakfast, lunch and dinner was 22·7 (7·8), 26·7 (9·3) and 37·4 (10·5) g for men and 19·3 (6·3), 23·2 (7·3) and 28·5 (7·0) g for women, respectively. After adjusting for age, baseline skeletal muscle mass and other confounders in logistic modelling, greater total protein intake was associated with lower prevalence of skeletal muscle mass decline among men at follow-up (P = 0·024). Particularly, the OR (95 % CI) for high lunchtime protein intake was low (0·11 (0·02, 0·61); P = 0·01). No significant association between total protein intake and prevalence of skeletal muscle mass decline was found among women.
Conclusions:
High total protein intake, particularly at lunchtime, is associated with retention of skeletal muscle mass in men.
To examine the association between green tea and coffee intake and cognitive decline in older adults.
Design:
A prospective cohort study. The average intake of green tea and coffee in the previous year was assessed through a dietitian interview using a dietary questionnaire. A Mini-Mental State Examination (MMSE) was conducted up to six times biennially. Cognitive decline was screened using the MMSE; its incidence was defined as the first time a score of <27 points was obtained in a biennial test from the baseline. Hazard ratios for incidence of cognitive decline were estimated according to the intake of the two beverages using multivariable Cox proportional hazard regression, controlling for sociodemographic and lifestyle factors.
Setting:
The National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA) in Japan.
Participants:
Men (n 620) and women (n 685), aged 60–85 years, from the NILS-LSA.
Results:
During a mean of 5·3 (sd 2·9) years of follow-up, 432 incident cases of cognitive decline were observed. Compared with participants who consumed green tea <once/d, the multivariable hazard ratio (95 % CI) was 0·70 (0·45, 1·06), 0·71 (0·52, 0·97) and 0·72 (0·54, 0·98) among those who consumed green tea once/d, 2–3 times/d and ≥4 times/d, respectively (Ptrend < 0·05). No significant association was found between coffee intake and cognitive decline.
Conclusions:
The intake of green tea, but not coffee, was shown to reduce the risk of cognitive decline in older adults.
The aim of the present study was to clarify the global relationship between Mediterranean diet score (MDS) and the incidence of IHD by country using international statistics.
Design
The incidence of IHD by country was derived from the Global Burden of Disease (GBD) database. Average supplies of food (g/d per capita) and energy (kcal/d per capita) by country, excluding loss between production and household, were obtained from the FAOSTAT database. MDS was evaluated based on the total score of nine food items that characterize the Mediterranean diet. The association between MDS and the incidence of IHD was examined in countries with a population of 1 million or greater using a general linear model controlled for socio-economic and lifestyle variables.
Setting
Population data from global international databases.
Participants
One hundred and thirty-two countries with a population of over 1 million.
Results
MDS was inversely correlated with obesity rate, ageing rate, years of education and IHD incidence; however, no associations were found with gross domestic product, life expectancy, smoking rate, energy supply or health expenditure. In the general linear model of IHD incidence by MDS controlled for socio-economic and lifestyle variables, the β of the MDS was –26·4 (se 8·6; P<0·01).
Conclusions
The results of this global international comparative study confirmed that the Mediterranean diet is inversely associated with the incidence of IHD.
The Korean VLBI Network (KVN) is a unique millimeter VLBI system which is consisted of three 21 m telescopes with relatively short baselines. We present the preliminary results of simultaneous monitoring observations of the 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers based on the KVN Key Science Project (KSP). We obtained the astrometrically registered maps of the H2O and SiO masers toward nine evolved stars using the source frequency phase referencing method (SFPR). The SFPR maps of the H2O and SiO masers enabled us to investigate the spatial structure and kinematics from the SiO to H2O maser regions including the development of an outward motion from the ring-like or elliptical structures of SiO masers to the asymmetric structures of the 22.2 GHz H2O maser features. In particular, the 86.2/129.3 GHz SiO (v=1, J=2–1 and J=3–2) masers were clearly imaged toward several objects for the first time. The SiO v=1, J=3–2 maser shows different distributions compared to those of the SiO v=1, 2, J=1–0 and v=1, J=2–1 masers implying a different physical condition.
We briefly introduce the VLBI maser astrometric analysis of IRAS 18043–2116 and IRAS 18113–2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser structures and velocities clearly show that the jets are formed in very short-lived, episodic outbursts, which may indicate episodic accretion in an underlying binary system.
In this proceeding paper, we introduce the recent results of Galactic maser astrometry by mainly focusing on those obtained with Japanese VLBI array VERA. So far we have obtained parallaxes for 86 sources including preliminary results, and combination with the data obtained with VLBA/BeSSeL provides astrometric results for 159 sources. With these most updated results we conduct preliminary determinations of Galactic fundamental parameters, obtaining R0 = 8.16 ± 0.26 kpc and Θ0 = 237 ± 8 km/s. We also derive the rotation curve of the Milky Way Galaxy and confirm the previous results that the rotation curve is fairly flat between 5 kpc and 16 kpc, while a remarkable deviation is seen toward the Galactic center region. In addition to the results on the Galactic structure, we also present brief overviews on other science topics related to masers conducted with VERA, and also discuss the future prospect of the project.
The RadioAstron space-VLBI mission has successfully detected extragalactic H2O MegaMaser emission regions at very long Earth to space baselines ranging between 1.4 and 26.7 Earth Diameters (ED). The preliminary results for two galaxies, NGC 3079 and NGC 4258, at baselines longer than one ED indicate masering environments and excitation conditions in these galaxies that are distinctly different. Further observations of NGC 4258 at even longer baselines are expected to reveal more of the physics of individual emission regions.
The brightness of maser features are fascinating and give valuable insight for circumstellar physics of oxygen-rich, intermediate-mass stars, in particular the final evolution of circumstellar envelopes (CSEs). The variety of accompanying masers such as SiO, H2O, and OH in the CSEs may provide unique probes into different stages of rapid CSE evolution. However, with only sparse monitoring of these masers one can sometimes find it difficult to accurately interpret their spatio-kinematics, origins and excitation mechanisms. Examples can be seen in the variety of proposed models for water masers associated with “water fountains” and for silicon-monoxide masers. In order to better understand these issues, one needs to consider continuous monitoring of the individual maser gas clumps over a few stellar cycles or episodic ejection events. Here I present our previous long-term monitoring observations, especially for the water fountain source W43A. Our current efforts involve programs of intensive monitoring observations of circumstellar maser sources over decadal time periods. These programs with the East Asia VLBI Network observe H2O and SiO maser lines simultaneously mapped at high cadence (2–8 weeks) with VLBI observations.
A survey of the Milky Way disk and the Magellanic System at the wavelengths of the 21-cm atomic hydrogen (H i) line and three 18-cm lines of the OH molecule will be carried out with the Australian Square Kilometre Array Pathfinder telescope. The survey will study the distribution of H i emission and absorption with unprecedented angular and velocity resolution, as well as molecular line thermal emission, absorption, and maser lines. The area to be covered includes the Galactic plane (|b| < 10°) at all declinations south of δ = +40°, spanning longitudes 167° through 360°to 79° at b = 0°, plus the entire area of the Magellanic Stream and Clouds, a total of 13 020 deg2. The brightness temperature sensitivity will be very good, typically σT≃ 1 K at resolution 30 arcsec and 1 km s−1. The survey has a wide spectrum of scientific goals, from studies of galaxy evolution to star formation, with particular contributions to understanding stellar wind kinematics, the thermal phases of the interstellar medium, the interaction between gas in the disk and halo, and the dynamical and thermal states of gas at various positions along the Magellanic Stream.
Highly collimated, bipolar fast jets are found in asymptotic giant branch (AGB) and post-AGB stars as well as in active galactic nuclei and young stellar objects. It is still unclear how to launch such jets from dying stars that were originally spherically symmetric. Exploration of the stellar jet evolution is also expected to probe its role in shaping a planetary nebula. Interestingly, some of stellar H2O maser sources — water fountains — exhibit stellar jets with spatially and kinematically high collimation in the earliest phase (<1000 years) of the jet evolution. Such water fountains have been identified in 14 sources to date. We have recently conducted interferometric (VLBA, EVN, VERA, VLA) maser and the single-dish (ASTE) CO J = 3 → 2 line observations of the water fountains. They have revealed a typical dynamical age (< 100 yr) and the detailed kinematical structures of the water fountains, possibility of the coexistence of “equatorial flows”, and their locations and kinematics in the Milky Way. Based on these results, the masses and evolutionary statuses of the host stars are also estimated.
We present a distance measurement to the semi-regular variable star RX Bootis (RX Boo). Using the VLBI Exploration of Radio Astrometry (VERA) telescope, we conducted astrometric observations of a water maser spot associated with RX Boo, as well as of the continuum reference source J1419+2706. Based on monitoring observations covering a full year, the annual parallax of RX Boo was measured at 7.31 ± 0.50 mas, corresponding to a distance of 136+10−9 pc. This distance uncertainty is smaller by a factor of two than those previously published, allowing us to determine the object's stellar properties more accurately. Using our distance, we can determine the absolute magnitude and discuss more precisely the locus of RX Boo on the period–luminosity (PL) relation. RX Boo exhibits two simultaneous pulsation periods and is located on the fundamental and first overtone Mira sequences of the PL relation. In addition, we calculated the radius and mass of the star.
Measurements of trigonometric parallaxes and secular motions of evolved stars, especially post-AGB stars including central objects of planetary nebulae and water fountain sources as well as peculiar or unclassified stars, provide unambiguous source distance scales and information on their orbits in the Milky Way Galaxy. True source luminosities and kinematical properties should lead us to elucidate the true characteristics and evolutional tracks of these stars. Here we present the recent results of astrometry towards H2O maser sources with the VLBI Exploration of Radio Astormetry (VERA). The target sources include a planetary nebula (K3–35), a pre-PN (IRAS 19312+1950), a water fountain (IRAS 18286−0959) and a K-type star (IRAS 22480+6002). We have demonstrated that parental stars of the former three sources should be intermediate-mass stars from their luminosities and orbits in the Milky Way. It is suggested that IRAS 22480+6002 should be a K-type supergiant previously suggested rather than an RV Tau variable star.
We report the results of multi-epoch very long baseline interferometry (VLBI) water (H2O) maser observations carried out with the VLBI Exploration of Radio Astrometry (VERA) toward the HW3d object within the Cepheus A star-forming region. We measured proper motions of 30 water maser features, tracing a compact bipolar outflow. This outflow is highly collimated, extending through ~400 mas (290 AU), and having a typical proper motion velocity of ~6 mas yr−1 (~21 km s−1). The dynamical timescale of the outflow was estimated to be ~100 years, showing that the outflow is tracing a very early star-formation phase. Our results provide strong support that the HW3d object harbors an internal massive protostar, as previous observations suggested. In addition, we have analyzed Very Large Array (VLA) archive 1.3 cm continuum data of the 1995 and 2006 epochs obtained towards Cepheus A. These results indicate possible different protostars around HW3d and/or strong variability in its radio continuum emission.
In 2011 February, a burst of the 22 GHz H2O maser in Orion KL was reported. In order to identify the bursting maser features, we have been carrying out observations of the 22 GHz H2O maser in Orion KL with VERA, a Japanese VLBI network dedicated for astrometry. The bursting maser turns out to consist of two spatially different features at 7.58 and 6.95 km s−1. We determine their absolute positions and find that they are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction, perpendicular to the elongation of the maser features. It is most likely that the outflow from the radio source I or another young stellar object interacting with Compact Ridge is a possible origin of the H2O maser burst. We will also carry out observations with ALMA in the cycle 0 period to monitor the submillimeter H2O maser lines in the Orion Compact Ridge region. These follow-up observations will provide novel information on the physical and chemical properties of the mastering region.
A trigonometric parallax distance is measurable for a planetary nebula if it harbors H2O (or OH) maser spots. We have demonstrated it for H2O maser sources, K3-35, IRAS 19312+1950 and IRAS 18286-0959 using the VLBI Exploration of Radio Astrometry (VERA). They are post-AGB stars and exhibit peculiar morpho-kinematical structures like a bipolar planetary nebula or a bipolar molecular jet (water fountain). The luminosities and secular motions of these sources derived from the trigonometric distances and proper motions of the H2O masers suggest that their parental stars may be intermediate-mass (2M⊙ < M* < 8 M⊙) evolved stars.
A “water fountain” is a transitional object between an AGB star and a PN. The VLBA observations of 22.2 GHz water maser emission reveal a “double-helix” outflow pattern from one of the water fountains, IRAS 18286–0959. The pattern is reasonably fit by a model consisting of two precessing jets. We propose that the two jets observed are a result of a single driving source with a significant proper motion. Using data from the AKARI catalogs, we also found that water fountains might have their own IR colors which are affected by the 9.7 μm silicate feature and the optical thickness of stellar envelopes. The colors could serve as new criteria for searching this type of rare objects.
We present a general three-dimensional model of multipolar planetary nebulae (PNe). By rotating to different viewing angles and adjusting the angles between the multiple lobes, we demonstrate that the model is able to reproduce HST Hα images of 20 multipolar young PNe. Though this model only considers the geometrical projection effects, it significantly unifies the selected PNe and can be considered as a first-order fundamental model of the “multipolar” morphological class. This kind of model reduces complexity and is essential to pursuing of the shaping mechanism. In addition, we illustrate that under some special conditions, i.e. in certain viewing angles, or with low sensitivity, it will be hard to imagine that the projected image originates from a multipolar-lobed model.
The Galactic Australian SKA Pathfinder (GASKAP) survey is one of several key science projects with ASKAP, a new radio telescope being built in Australia as a technology demonstrator for the Square Kilometer Array (SKA). GASKAP aims to survey about 12,779 square degrees of the Galaxy and the Magellanic System, at high spectral resolution (0.2 km s−1) and using several wavelengths: the λ21-cm HI line, the λ18-cm OH lines, and the comb of recombination lines around λ18-cm. The area covered by GASKAP includes all of the Galactic plane south of declination +40° with |b| < 10°, selected areas at higher latitudes covering important interstellar clouds in the disk and halo, the Large and Small Magellanic Clouds, and the Magellanic Bridge and Stream. Compared with previous surveys, GASKAP will achieve an order of magnitude or greater improvement in brightness sensitivity and resolution in various combinations of beam size and mapping speed matched to the astrophysical objectives.