Three-dimensional (3D) tomographic imaging of the structural, chemical, and physical properties of a material provides key knowledge that links the structure of a material to both its processing and structure that is central to studies across a broad spectrum of materials. For many decades, tomography using x-rays or electrons has proven to be an essential 3D characterization tool. In recent years, advances in technology have significantly pushed the envelope of these techniques in many respects, enabling new imaging capabilities at the nanometer and atomic scale. This article highlights several such developments in nanoscale x-ray and electron tomography. The five articles that appear in this issue of MRS Bulletin discuss research frontiers that include multimodal x-ray tomography at the nanoscale, x-ray spectroscopic tomography, dark-field x-ray microscopy, electron nanotomography for functional nanomaterials, and atomistic imaging by electron tomography. These articles give a holistic view of the status of these techniques and promising future directions, as well highlighting their applications for scientific problems.