We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The aim of this paper is to study the threshold behavior for the satisfiability property of a random k-XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with k variables per equation. For k ≥ 3 we show the existence of a sharp threshold for the satisfiability of a random k-XOR-CNF formula, whereas there are smooth thresholds for k=1 and k=2.
In this paper we study random linear systems with $k > 3$ variables per equation over the finite field GF(2), or equivalently k-XOR-CNF formulas. In a previous paper Creignou and Daudé proved that there exists a phase transition exhibiting a sharp threshold, for the consistency (satisfiability) of such systems (formulas). The control parameter for this transition is the ratio of the number of equations to the number of variables, and the scale for which the transition occurs remains somewhat elusive. In this paper we establish, for any $k > 3$, non-trivial lower and upper estimates of the value of the control ratio for which the phase transition occurs. For $k=3$ we get 0.89 and 0.93, respectively. Moreover, we give experimental results for $k=3$ suggesting that the critical ratio is about 0.92. Our estimates are clearly close to the critical ratio.
The Gaussian algorithm for lattice reduction in dimension 2 is analysed under its standard version. It is found that, when applied to random inputs in a continuous model, the complexity is constant on average, its probability distribution decays geometrically, and the dynamics are characterized by a conditional invariant measure. The proofs make use of connections between lattice reduction, continued fractions, continuants, and functional operators. Analysis in the discrete model and detailed numerical data are also presented.
Email your librarian or administrator to recommend adding this to your organisation's collection.