We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate the flame acceleration to detonation in 2.0 and 0.5 mm planar glass combustion chambers, the experiments have been conducted utilising ethylene/oxygen mixtures at atmospheric pressure and temperature. The high-speed camera has been used to record the revolution of flame front and pressure inside the combustion chamber. Different equivalence ratios and ignition locations have been considered in the experiments. The results show that the detonation pressure in the 2 mm thick chamber is nearly three times of Chapman-Jouguet pressure, while detonation pressure in the 0.5 mm thick chamber is only 45.7% of the Chapman-Jouguet value at the stoichiometric mixture. This phenomenon is attributed to the larger pressure loss in the thinner chamber during the detonation propagation. As the value of equivalence ratio is 2.2, the detonation cannot be produced in the 2 mm thick chamber, while the detonation can be generated successfully in the 0.5 mm thick chamber. This phenomenon indicates that the deflagration is easily to be accelerated and transformed into the detonation, due to a larger wall friction and reflection. Besides, the micro-obstacle has been added into the combustor can shorten the detonation transition time and reduces the distance of the detonation transition.
We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate $\mathcal {C}_{\varepsilon }$ fits well with the model $\mathcal {C}_{\varepsilon } = \mathcal {C}_{\varepsilon,\infty } + \mathcal {D}/R_L^-$ for all levels of flow compressibility considered here, where $R_L^-$ is the generalized large-scale Reynolds number. The asymptotic value $\mathcal {C}_{\varepsilon,\infty }$ describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances. However, tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance. We describe several near-infrared, visible, ultraviolet and soft and hard X-ray diagnostics employed in a ∼1022 W/cm2 laser–plasma experiment. We used nearly 10 J total energy femtosecond laser pulses focused into an approximately 1.3-μm focal spot on 5–20 μm thick stainless-steel targets. We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5 μm accuracy (i.e., around half of the short Rayleigh length) and show that several diagnostics (in particular, 3$\omega$ reflection and on-axis hard X-rays) can ensure this accuracy. We demonstrated target positioning within several micrometers from the focus, ensuring over 80% of the ideal peak laser intensity on-target. Our approach is relatively fast (it requires 10–20 laser shots) and does not rely on the coincidence of low-power and high-power focal planes.
Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent–child reading in mitigating the effects of screen time.
Methods
We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent–child reading time was a moderator of the link between screen time and brain network topology.
Results
Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent–child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (β = −0.640, p = 0.005).
Conclusion
Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent–child reading in moderating the association between screen time and topological brain restructuring in early childhood.
The third-order law links energy transfer rates in the inertial range of magneto- hydrodynamic (MHD) turbulence with third-order structure functions. Anisotropy, a typical property in the solar wind, challenges the applicability of the third-order law with the isotropic assumption. To shed light on the energy transfer process in the presence of anisotropy, we conducted direct numerical simulations of forced MHD turbulence with normal and hyper-viscosity under various strengths of the external magnetic field ($B_0$), and calculated three forms of third-order structure function with or without averaging of the azimuthal or polar angles with respect to $B_0$ direction. Correspondingly, three estimated energy transfer rates were obtained. The result shows that the peak of normalized third-order structure function occurs at larger scales closer to the $B_0$ direction, and the maximum of longitudinal transfer rates shifts away from the $B_0$ direction at larger $B_0$. Compared with normal viscous cases, hyper-viscous cases can attain better separated inertial range, thus facilitating the estimation of the energy cascade rates. We find that the widespread use of the isotropic form of the third-order law in estimating the energy transfer rates is questionable in some cases, especially when the anisotropy arising from the mean magnetic field is inevitable. In contrast, the direction-averaged third-order structure function properly accounts for the effect of anisotropy and predicts the energy transfer rates and inertial range accurately, even at very high $B_0$. With limited statistics, the third-order structure function shows a stronger dependence on averaging of azimuthal angles than the time, especially for high $B_0$ cases. These findings provide insights into the anisotropic effect on the estimation of energy transfer rates.
Dentists prescribe 10% of all outpatient antibiotics in the United States and are the top specialty prescriber. Data on current antibiotic prescribing trends are scarce. Therefore, we evaluated trends in antibiotic prescribing rates by dentists, and we further assessed whether these trends differed by agent, specialty, and by patient characteristics.
Design:
Retrospective study of dental antibiotic prescribing included data from the IQVIA Longitudinal Prescription Data set from January 1, 2012 to December 31, 2019.
Methods:
The change in the dentist prescribing rate and mean days’ supply were evaluated using linear regression models.
Results:
Dentists wrote >216 million antibiotic prescriptions between 2012 and 2019. The annual dental antibiotic prescribing rate remained steady over time (P = .5915). However, the dental prescribing rate (antibiotic prescriptions per 1,000 dentists) increased in the Northeast (by 1,313 antibiotics per 1,000 dentists per year), among oral and maxillofacial surgeons (n = 13,054), prosthodontists (n = 2,381), endodontists (n = 2,255), periodontists (n = 1,961), and for amoxicillin (n = 2,562; P < .04 for all). The mean days’ supply significantly decreased over the study period by 0.023 days per 1,000 dentists per year (P < .001).
Conclusions:
From 2012 to 2019, dental prescribing rates for antibiotics remained unchanged, despite decreases in antibiotic prescribing nationally and changes in guidelines during the study period. However, mean days’ supply decreased over time. Dental specialties, such as oral and maxillofacial surgeons, had the highest prescribing rate with increases over time. Antibiotic stewardship efforts to improve unnecessary prescribing by dentists and targeting dental specialists may decrease overall antibiotic prescribing rates by dentists.
Background: Women continue to represent a minority of the neurosurgery workforce in Canada. We herein aim to provide an update of the current Canadian landscape to gain a better understanding of the factors contributing to this disparity. Methods: Chain-referral sampling, interviews, personal communications, and online resources were used as data sources. Online survey results obtained from women attending neurosurgeons across Canada were also utilized. Quantitative analyses were performed, including summary and comparative statistics. Qualitative analyses of free-text responses were performed using axial and open coding. Results: We observe a positive trend in the incoming and graduating of female residents across the country, although this trend is lagging compared to other surgical specialties. The proportion of women in active practice remains low. Positive enabling factors for success include supportive colleagues and work environment (52.6%), academic accomplishments (36.8%), and advanced fellowship training (47.4%). Perceived barriers reported included inequalities regarding career advancement opportunities (57.8%), conflicting professional and personal interests (57.8%), and lack of mentorship (36.8%). Conclusions: Women continue to represent a small proportion of practicing neurosurgeons across Canada. Our work highlights several key factors contributing to the low representation of women in neurosurgery and identifies actionable items that can be addressed by training programs and institutions.
Background: Status dystonicus (SD) is a life-threatening form of dystonia with limited treatments available. We sought to better understand the processes, outcomes, and complications of deep brain stimulation (DBS) for pediatric SD through a systematic review alongside an institutional case series. Methods: Data regarding treatment, stimulation parameters, dystonia severity and outcomes was collected for the case series (n=7) and systematic review (n=70, conducted in accordance with PRISMA guidelines). This was analysed descriptively (rates, outcome measures). For the case series we created probabilistic voxel-wise maps for improvement in dystonia based on brain region stimulated. Results: All patients in our case series and > 95% of patients in the systematic review had resolution of SD with DBS, typically within 2-4 weeks. Most patients in the review (84%) and all patients in the case series had DBS implanted to the globus pallidus internus. In terms of dystonia severity scores, there was a mean improvement of 25% (case series) or 49% (systematic review). Reported mortality was 4% in the systematic review. Conclusions: DBS for pediatric SD is feasible and safe. It allows for increased survival as well as quality of life - however risks still exist. More work is needed to determine timing, eligibility, and stimulation parameters.
A high-load counter-rotating compressor is optimised based on the method of coupling aerodynamic optimisation technology and computational fluid dynamics, and the flow structures in the passage are analysed and evaluated by vorticity dynamics diagnosis. The results show that the aerodynamic performance of optimised compressor are obviously improved at both design point and off-design point. By comparing the distribution characteristics of vorticity dynamics parameters on the blade surface before and after the optimisation, it is found that BVF (boundary vorticity flux) and circumferential vorticity can effectively capture high flow loss regions such as shock waves and secondary flow in the passage. In addition, the BEF (Boundary enstrophy flux) diagnosis method based on the theory of boundary enstrophy flux is developed, which expands the application scenario of the boundary vorticity dynamics diagnosis method. The change of vorticity dynamics parameters shows blade geometric parameters’ influence on the passage’s viscous flow field, which provides a theoretical basis for the aerodynamic optimisation design.
This paper studied the use of eye movement data to form criteria for judging whether pilots perceive emergency information such as cockpit warnings. In the experiment, 12 subjects randomly encountered different warning information while flying a simulated helicopter, and their eye movement data were collected synchronously. Firstly, the importance of the eye movement features was calculated by ANOVA (analysis of variance). According to the sorting of the importance and the Euclidean distance of each eye movement feature, the warning information samples with different eye movement features were obtained. Secondly, the residual shrinkage network modules were added to CNN (convolutional neural network) to construct a DRSN (deep residual shrinkage networks) model. Finally, the processed warning information samples were used to train and test the DRSN model. In order to verify the superiority of this method, the DRSN model was compared with three machine learning models, namely SVM (support vector machine), RF (radom forest) and BPNN (backpropagation neural network). Among the four models, the DRSN model performed the best. When all eye movement features were selected, this model detected pilot perception of warning information with an average accuracy of 90.4%, of which the highest detection accuracy reached 96.4%. Experiments showed that the DRSN model had advantages in detecting pilot perception of warning information.
Postpartum and peripartum depression are debilitating disorders that impact the mother and their ability to care for their children’s emotional, social, and physical needs. Current treatments include psychotherapy, pharmacotherapy, and electroconvulsive therapy. These treatments are moderately effective or come with side effects that can negatively impact mother and child. As a result, many mothers view some treatments as unacceptable while pregnant or breastfeeding. Over the last decade, repetitive transcranial magnetic stimulation (rTMS) has shown promise as an effective and safe treatment option for postpartum and peripartum depression. However, little is known regarding people’s knowledge and attitudes towards this emerging technology, with no research assessing this in Canada.
Objectives
We aim to identify gaps in knowledge and to assess attitudes toward rTMS as a treatment for postpartum and peripartum depression in mental health professionals, patients, and the general public living in Canada.
Methods
A mixed methods study design will be employed. The qualitative portion will consist of individual semi-structured interviews. An inductive thematic analysis will be completed. The quantitative portion will consist of an anonymous, self-administered survey shared through REDCap. Focus groups with rTMS experts will be conducted to inform survey creation.
Results
No resulst at this time.
Conclusions
Understanding gaps in knowledge and attitudes toward rTMS is the first step toward ensuring that everyone is well informed and able to access safe and effective treatments. With limited treatment options available to a postpartum and/or peripartum depression patients being well informed on all treatments is crucial towards accessing treatments that best suit their needs.
Mental health and psychosocial support (MHPSS) staff in humanitarian settings have limited access to clinical supervision and are at high risk of experiencing burnout. We previously piloted an online, peer-supervision program for MHPSS professionals working with displaced Rohingya (Bangladesh) and Syrian (Turkey and Northwest Syria) communities. Pilot evaluations demonstrated that online, peer-supervision is feasible, low-cost, and acceptable to MHPSS practitioners in humanitarian settings.
Objectives
This project will determine the impact of online supervision on i) the wellbeing and burnout levels of local MHPSS practitioners, and ii) practitioner technical skills to improve beneficiary perceived service satisfaction, acceptability, and appropriateness.
Methods
MHPSS practitioners in two contexts (Bangladesh and Turkey/Northwest Syria) will participate in 90-minute group-based online supervision, fortnightly for six months. Sessions will be run on zoom and will be co-facilitated by MHPSS practitioners and in-country research assistants. A quasi-experimental multiple-baseline design will enable a quantitative comparison of practitioner and beneficiary outcomes between control periods (12-months) and the intervention. Outcomes to be assessed include the Kessler-6, Harvard Trauma Questionnaire and Copenhagen Burnout Inventory and Client Satisfaction Questionnaire-8.
Results
A total of 80 MHPSS practitioners will complete 24 monthly online assessments from May 2022. Concurrently, 1920 people receiving MHPSS services will be randomly selected for post-session interviews (24 per practitioner).
Conclusions
This study will determine the impact of an online, peer-supervision program for MHPSS practitioners in humanitarian settings. Results from the baseline assessments, pilot evaluation, and theory of change model will be presented.
Large-eddy simulations of turbulent flow in partially filled pipes are conducted to investigate the effect of secondary currents on the friction factor, first- and second-order statistics and large-scale turbulent motion. The method is validated first and simulated profiles of the mean streamwise velocity, normal stresses and turbulent kinetic energy (TKE) are shown to be in good agreement with experimental data. The secondary flow is stronger in half- and three-quarters full pipes compared with quarter full or fully filled pipe flows, respectively. The origin of the secondary flow is examined by both the TKE budget and the steamwise vorticity equation, providing evidence that secondary currents originate from the corner between the free surface and the pipe walls, which is where turbulence production is larger than the sum of the remaining terms of the TKE budget. An extra source of streamwise vorticity production is found at the free surface near the centreline bisector, due to the two-component asymmetric turbulence there. The occurrence of dispersive stresses (due to secondary currents) reduces the contribution of the turbulent shear stress to the friction factor, which results in a reduction of the total friction factor of flows in half and three-quarters full pipes in comparison to a fully filled pipe flow. Furthermore, the presence of significant secondary currents inhibits very-large-scale motion (VLSM), which in turn reduces the strength and scales of near-wall streaks. Subsequently, near-wall coherent structures generated by streak instability and transient growth are significantly suppressed. The absence of VLSM and less coherent near-wall turbulence structures is supposedly responsible for the drag reduction in partially filled pipe flows relative to a fully filled pipe flow at an equivalent Reynolds number.
We study the decay of compressible magnetohydrodynamic (MHD) turbulence, emphasizing exchanges of energy between compressive and incompressive kinetic energies, magnetic energy, and thermal energy. A recently developed high order finite difference code is employed for compressible runs with a Mach number up to 2. Varying the nature of the initial conditions (magnitudes of velocity and magnetic fluctuations), and initial Mach numbers permits examination of various dynamical regimes characterized here by the changes between different energy reservoirs. Acoustic waves are responsible for the oscillatory exchange between compressive kinetic and thermal energy through the pressure dilatation term. The results indicate that exchange between kinetic and magnetic energy is dominated by interactions involving the solenoidal velocity. Several systematic rapid adjustments are found to be reproducible with simple scalings derived from the empirical data.
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
Previous studies have revealed associations of meteorological factors with tuberculosis (TB) cases. However, few studies have examined their lag effects on TB cases. This study was aimed to analyse nonlinear lag effects of meteorological factors on the number of TB notifications in Hong Kong. Using a 22-year consecutive surveillance data in Hong Kong, we examined the association of monthly average temperature and relative humidity with temporal dynamics of the monthly number of TB notifications using a distributed lag nonlinear models combined with a Poisson regression. The relative risks (RRs) of TB notifications were >1.15 as monthly average temperatures were between 16.3 and 17.3 °C at lagged 13–15 months, reaching the peak risk of 1.18 (95% confidence interval (CI) 1.02–1.35) when it was 16.8 °C at lagged 14 months. The RRs of TB notifications were >1.05 as relative humidities of 60.0–63.6% at lagged 9–11 months expanded to 68.0–71.0% at lagged 12–17 months, reaching the highest risk of 1.06 (95% CI 1.01–1.11) when it was 69.0% at lagged 13 months. The nonlinear and delayed effects of average temperature and relative humidity on TB epidemic were identified, which may provide a practical reference for improving the TB warning system.
The oceans have a huge capability to store, release, and transport heat, water, and various chemical species on timescales from seasons to centuries. Their transports affect global energy, water, and biogeochemical cycles and are crucial elements of Earth’s climate system. Ocean variability, as represented, for example, by sea surface temperature (SST) variations, can result in anomalous diabatic heating or cooling of the overlying atmosphere, which can in turn alter atmospheric circulation in such a way as to feedback on ocean thermal and current structures to modify the original SST variations. Ocean–atmosphere interactions in one ocean basin can also influence remote regions via interbasin teleconnections that can trigger responses having both local and far-field impacts. This chapter highlights the defining aspects of the climate in individual ocean basins, including mean states, seasonal cycles, interannual-to-interdecadal variability, and interactions with other basins. Key components of the global and tropical ocean observing system are also described.
The coronavirus disease 2019 (COVID-19) pandemic has led to significant strain on front-line healthcare workers.
Aims
In this multicentre study, we compared the psychological outcomes during the COVID-19 pandemic in various countries in the Asia-Pacific region and identified factors associated with adverse psychological outcomes.
Method
From 29 April to 4 June 2020, the study recruited healthcare workers from major healthcare institutions in five countries in the Asia-Pacific region. A self-administrated survey that collected information on prior medical conditions, presence of symptoms, and scores on the Depression Anxiety Stress Scales and the Impact of Events Scale-Revised were used. The prevalence of depression, anxiety, stress and post-traumatic stress disorder (PTSD) relating to COVID-19 was compared, and multivariable logistic regression identified independent factors associated with adverse psychological outcomes within each country.
Results
A total of 1146 participants from India, Indonesia, Singapore, Malaysia and Vietnam were studied. Despite having the lowest volume of cases, Vietnam displayed the highest prevalence of PTSD. In contrast, Singapore reported the highest case volume, but had a lower prevalence of depression and anxiety. In the multivariable analysis, we found that non-medically trained personnel, the presence of physical symptoms and presence of prior medical conditions were independent predictors across the participating countries.
Conclusions
This study highlights that the varied prevalence of psychological adversity among healthcare workers is independent of the burden of COVID-19 cases within each country. Early psychological interventions may be beneficial for the vulnerable groups of healthcare workers with presence of physical symptoms, prior medical conditions and those who are not medically trained.