We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The first longitudinal growth study dates back to 1759 when Count de Montbeillard measured the body length of his son from birth to 18 years (Scammon, 1927; Tanner, 1962). Actually, when studying growth, there are two basically different approaches: longitudinal and crosssectional studies. In longitudinal growth studies, we measure the same children over several years at regular intervals (as was done by de Montbeillard) in order to be able to establish individual growth patterns. In cross-sectional growth studies, we measure children of different ages only once. A plot of the average height obtained at each age (or age group) depicts the average growth pattern in the sample. One should realize that the shape of the curve seen in an average growth pattern is different from the shape of individual growth curves (Hauspie, 1989). The information provided by the longitudinal and cross-sectional approaches is quite different. Both methods have their advantages and limitations. Whether the data concerns individual or average growth patterns, we are dealing with a series of measures of size (height or average height, for example) at particular ages, either precise chronological ages (in case of longitudinal studies) or mid-points of age classes (in case of cross-sectional studies). However, the researcher is quite often interested in determining the underlying continuous process of growth, from which he wants to derive certain characteristics, such as the age at maximum velocity at adolescence, for example.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.