We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Atomic probe tomography (APT) is able to generate three-dimensional chemical maps in atomic resolution. The required instruments for APT have evolved over the last 20 years from an experimental to an established method of materials analysis. Here, we describe the realization of a new modular instrument concept that allows the direct attachment of APT to a dual-beam SEM microscope with the main achievement of fast and direct sample transfer and high flexibility in chamber and component configuration. New operational modes are enabled regarding sample geometry, alignment of tips, and the microelectrode. The instrument is optimized to handle cryo-samples at all stages of preparation and storage. It comes with its own software for evaluation and reconstruction. The performance in terms of mass resolution, aperture angle, and detection efficiency is demonstrated with a few application examples.
Imaging of liquids and cryogenic biological materials by electron microscopy has been recently enabled by innovative approaches for specimen preparation and the fast development of optimized instruments for cryo-enabled electron microscopy (cryo-EM). Yet, cryo-EM typically lacks advanced analytical capabilities, in particular for light elements. With the development of protocols for frozen wet specimen preparation, atom probe tomography (APT) could advantageously complement insights gained by cryo-EM. Here, we report on different approaches that have been recently proposed to enable the analysis of relatively large volumes of frozen liquids from either a flat substrate or the fractured surface of a wire. Both allowed for analyzing water ice layers which are several micrometers thick consisting of pure water, pure heavy water, and aqueous solutions. We discuss the merits of both approaches and prospects for further developments in this area. Preliminary results raise numerous questions, in part concerning the physics underpinning field evaporation. We discuss these aspects and lay out some of the challenges regarding the APT analysis of frozen liquids.
To solve the uncertainty of the platinum (Pt)–palladium (Pd) phase diagram, especially the existence of a suggested miscibility gap, atom probe tomography (APT) was used to determine the time evolution of the composition after heat treatment. Due to the extraordinarily slow diffusion in the temperature range of the controversial phase separation, the investigated volume was limited to nano-sized multiple layers deposited by ion beam sputtering (IBS). The evaporated volume was reconstructed from the obtained datasets and the respective diffusion coefficients were determined using the Fourier series solution of the diffusion equation. Beginning with pure Pt and Pd layers annealed at 673, 773, 873, and 973 K, the mixing appears to be purely diffusion controlled in the chosen annealing times, but the state of complete mixing was still not observed. Therefore, extended isothermal annealing sequences at 673 and 773 K with pre-alloyed layers have been carried out. They clearly suggest complete mixing even at the lowest investigated temperatures.
The unclear miscibility of CuNi alloys was investigated with atom probe tomography (APT). Multilayered thin film samples were prepared by ion beam sputtering (IBS) and focused ion beam (FIB) shaping. Long-term isothermal annealing treatments in a UHV furnace were conducted at temperatures of 573, 623, and 673 K to investigate the mixing process. The effective interdiffusion coefficient of the nanocrystalline microstructure (including defect diffusion) was determined to be Deff = 1.86 × 10−10 m2/s × exp(−164 kJ/mol/RT) by fitting periodic composition profiles through a Fourier series. In nonequilibrium states, microstructural defects like grain boundaries and precipitates were observed. While at the two higher temperatures total mixing is observed, a clear experimental evidence is found for a miscibility gap at 573 K with the boundary concentrations of 26 and 66 at%. These two compositions are used in a subregular solution model to reconstruct the phase miscibility gap. So, the critical temperature TC of the miscibility gap is found to be 608 K at a concentration of 45 at% Ni.
Atom probe tomography (APT) has been established in the microscopic chemical and spatial analysis of metallic or semiconductors nanostructures. In recent years, and especially with the development of a transfer shuttle system and adapted preparation protocols, the field of frozen liquids has been opened up. Still, very limited knowledge is available about the evaporation and fragmentation behavior of frozen liquids in APT. In this work, efforts were made to extend the method toward organic and biological soft matter, which are mostly built from hydrocarbon chains, the evaporation and fragmentation behavior of simple alkane chains (n-tetradecanes). Tetradecane shows a very complex evaporation behavior whereby peaks of C1–C15 can be observed. Based on multihit events and the representation of these in correlation plots, more detailed information about the evaporation behavior and the decay of molecules into smaller fragments in the region near the tip can be studied. A variety of different dissociation tracks of larger molecules in their excited state and their subsequent decay in low-field regions, on the way to the detector, could be observed and the dissociation zone in the low-field region was calculated.
Atom probe tomography measurements of self-assembled monolayers of 1-octadecanethiol on platinum tips were performed and their fragmentation behavior under the influence of different laser powers was investigated. The carbon backbone evaporates in the form of small hydrocarbon fragments consisting of one to four carbon atoms, while sulfur evaporates exclusively as single ions. The carbon molecules evaporate at very low fields of 5.9 V/nm, while S requires a considerably higher evaporation field of 23.4 V/nm. With increasing laser power, a weak, but noticeable trend toward larger fragment sizes is observed. No hydrocarbon fragments containing S are detected, indicating that a strong S–Pt bond has formed. The observed surface coverage of S fits well with literature values and is higher for (111)-oriented samples than for (200).
Local magnification artifacts in atom probe tomography (APT) caused by multiphase materials with heterogeneous evaporation behavior are a well-known problem. In particular, the analysis of the exact size, shape, and composition of small precipitates is, therefore, not trivial. We performed numerical simulations of APT measurements to predict the reconstructed morphology of precipitates with contrasting evaporation thresholds. Based on a statistical approach that avoids coarse graining, the simulated data are evaluated to develop a model for the calculation of the original size of the precipitates. The model is tested on experimental APT data of precipitates with a higher and lower evaporation field in a ferritic alloy. Accurate sizes, proven by a complementary investigation by transmission electron microscopy, are obtained. We show further, how the size information can be used to obtain compositional information of the smallest precipitates and present a new methodology to determine a correct in-depth scaling of the APT reconstruction in case no complementary geometric information about the specimen exists or if no lattice planes are visible in the reconstruction.
An improved reconstruction method for atom probe tomography is presented. In this approach, the curvature of the field emitter is variable, in contrast to the conventional reconstruction technique. The information about the tip shape at different stages of the reconstruction is directly extracted from the local density of events on the detector. To this end, the detector and the tip surface are split into different segments. According to the density distribution of events observed on the detector, the size of the corresponding segment on the tip surface is calculated, yielding an emitter profile which is not necessarily spherical. The new approach is demonstrated for emitter structures with radial symmetry that contain a spherical precipitate with a substantially lower or higher evaporation field compared to the surrounding matrix. A comparison to the conventional point projection approach is made.
Frequently, fundamental scientific and technological issues are related to the chemical structure of a material at the nanometer or even atomistic length scales. This includes, but is not limited to, internal interfaces of complex topology as they appear, for example, in current energy-harvesting applications or advanced microelectronics. Scientific understanding of the underlying physics and chemistry requires advanced characterization tools that provide critical three-dimensional information at the subnanometer length scale. Atom probe tomography (APT) meets such requirements. Today, with remarkable progress in instrumentation and sample preparation, APT has become a very versatile tool to address fundamental questions of materials science. In this issue of MRS Bulletin, the APT technique is introduced, with a particular focus on recent developments and the broadening range of studied material classes and applications.
As a major improvement in three-dimensional (3D) atom probe, the range of applicable material classes has recently been broadened by the establishment of laser-assisted atom probes (LA-3DAP). Meanwhile, measurements of materials of low conductivity, such as dielectrics, ceramics, and semiconductors, have widely been demonstrated. However, besides different evaporation probabilities, heterogeneous dielectric properties are expected to give rise to additional artifacts in the 3D volume reconstruction on which the method is based. In this article, these conceivable artifacts are discussed based on a numeric simulation of the field evaporation. Sample tips of layer- or precipitate-type geometry are considered. It is demonstrated that dielectric materials tend to behave similarly to metals of reduced critical evaporation field.
This article reviews investigations of the growth and reactions within thin metal and oxide films using atom-probe tomography. Included in this review are (1) studies of interfacial and growth reactions in magnetoresistive metallic, metal/oxide, and magnetic magnetostrictive multilayers; (2) comparison of selected portions of these results to simulated film growth using molecular dynamics; and (3) study of the origin of room-temperature ferromagnetism in dilute magnetic semiconductors. Information of this type is useful in order to understand the formation and thermal evolution of thin films (and to compare to theory and modeling) and, ultimately, to permit further optimization of devices based on thin films.
Atom probe tomography provides a chemical analysis of nanostructured materials with outstanding resolution. However, due to the process of field evaporation triggered by nanosecond high voltage pulses, the method is usually limited to conductive materials. As part of recent efforts to overcome this limitation, it is demonstrated that the analysis of thick NiO and WO3 oxide layers is possible by laser pulses of 500 ps duration. A careful analysis of the mass spectra demonstrates that the expected stoichiometries are well reproduced by the measurement. The reconstruction of lattice planes proves that surface diffusion is negligible also in the case of thermal pulses.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.