We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Childhood infections are associated with adult psychosis and depression, but studies of psychotic experiences (PEs) and depressive symptoms in childhood, adolescence, and early-adulthood are scarce. Previous studies have typically examined severe infections, but studies of common infections are also scarce.
Methods
Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort, we examined associations of the number of infections in childhood from age 1.5 to 7.5 years with depressive symptom scores at age 10, 13, 14, 17, 18, and 19 years, and with PEs at 12 and 18 years. We performed additional analysis using infection burden (‘low’ = 0–4 infections, ‘medium’ = 5–6, ‘high’ = 7–9, or ‘very high’ = 10–22 infections) as the exposure.
Results
The risk set comprised 11 786 individuals with childhood infection data. Number of childhood infections was associated with depressive symptoms from age 10 (adjusted beta = 0.14; standard error (s.e.) = 0.04; p = <0.01) to 17 years (adjusted beta = 0.17; s.e. = 0.08; p = 0.04), and with PEs at age 12 (suspected/definite PEs: adjusted odds ratio (OR) = 1.18; 95% confidence interval (CI) = 1.09–1.27). These effect sizes were larger when the exposure was defined as very high infection burden (depressive symptoms age 17: adjusted beta = 0.79; s.e. = 0.29; p = 0.01; suspected/definite PEs at age 12: adjusted OR = 1.60; 95% CI = 1.25–2.05). Childhood infections were not associated with depressive/psychotic outcomes at age 18 or 19.
Conclusions
Common early-childhood infections are associated with depressive symptoms up to mid-adolescence and with PEs subsequently in childhood, but not with these outcomes in early-adulthood. These findings require replication including larger samples with outcomes in adulthood.
Peripheral low-grade inflammation in depression is increasingly seen as a therapeutic target. We aimed to establish the prevalence of low-grade inflammation in depression, using different C-reactive protein (CRP) levels, through a systematic literature review and meta-analysis.
Methods
We searched the PubMed database from its inception to July 2018, and selected studies that assessed depression using a validated tool/scale, and allowed the calculation of the proportion of patients with low-grade inflammation (CRP >3 mg/L) or elevated CRP (>1 mg/L).
Results
After quality assessment, 37 studies comprising 13 541 depressed patients and 155 728 controls were included. Based on the meta-analysis of 30 studies, the prevalence of low-grade inflammation (CRP >3 mg/L) in depression was 27% (95% CI 21–34%); this prevalence was not associated with sample source (inpatient, outpatient or population-based), antidepressant treatment, participant age, BMI or ethnicity. Based on the meta-analysis of 17 studies of depression and matched healthy controls, the odds ratio for low-grade inflammation in depression was 1.46 (95% CI 1.22–1.75). The prevalence of elevated CRP (>1 mg/L) in depression was 58% (95% CI 47–69%), and the meta-analytic odds ratio for elevated CRP in depression compared with controls was 1.47 (95% CI 1.18–1.82).
Conclusions
About a quarter of patients with depression show evidence of low-grade inflammation, and over half of patients show mildly elevated CRP levels. There are significant differences in the prevalence of low-grade inflammation between patients and matched healthy controls. These findings suggest that inflammation could be relevant to a large number of patients with depression.
Prenatal infections have been proposed as a putative risk factor for a number of psychiatric outcomes across a continuum of severity. Evidence on eating disorders is scarce. We investigated whether exposure to prenatal maternal infections is associated with an increased risk of disordered eating and weight and shape concerns in adolescence in a large UK birth cohort.
Methods
We used data from the Avon Longitudinal Study of Parents and Children. The primary exposure was maternal experience of infections at any time in pregnancy. Study outcomes were presence of any, monthly or weekly disordered eating at 14 and 16 years of age, and weight and shape concerns at 14 years. We defined the causal effect of the exposure on these outcomes using a counterfactual framework adjusting our analyses for a number of hypothesised confounders, and imputing missing confounder data using multiple imputation.
Results
In total, 4884 children had complete exposure and outcome data at age 14 years, and 4124 at 16 years. Exposed children had a greater risk of reporting weekly disordered eating at both age 14 [risk difference (RD) 0.9%, 95% confidence interval (CI) −0.01 to 1.9, p = 0.08] and 16 (RD 2.3%, 95% CI 0.6–3.9, p < 0.01), though evidence of an association was weak at age 14 years. Exposed children also had greater weight and shape concerns at age 14 years (mean difference 0.15, 95% CI 0.05–0.26, p < 0.01).
Conclusions
Exposure to prenatal maternal infection is associated with greater risk of disordered eating in adolescence. This association could be explained by in utero processes leading to impaired neurodevelopment or altered immunological profiles. Residual confounding cannot be excluded.
Schizophrenia is associated with impaired neurodevelopment as indexed by lower premorbid IQ. We examined associations between erythrocyte sedimentation rate (ESR), a marker of low-grade systemic inflammation, IQ, and subsequent schizophrenia and other non-affective psychoses (ONAP) to elucidate the role of neurodevelopment and inflammation in the pathogenesis of psychosis.
Methods
Population-based data on ESR and IQ from 638 213 Swedish men assessed during military conscription between 1969 and 1983 were linked to National Hospital Discharge Register for hospitalisation with schizophrenia and ONAP. The associations of ESR with IQ (cross-sectional) and psychoses (longitudinal) were investigated using linear and Cox-regression. The co-relative analysis was used to examine effects of shared familial confounding. We examined mediation and moderation of effect between ESR and IQ on psychosis risk.
Results
Baseline IQ was associated with subsequent risk of schizophrenia (adjusted HR per 1-point increase in IQ = 0.961; 95% confidence interval (CI) 0.960–0.963) and ONAP (adjusted HR = 0.973; 95% CI 0.971–0.975). Higher ESR was associated with lower IQ in a dose-response fashion. High ESR was associated with increased risk for schizophrenia (adjusted HR = 1.14; 95% CI 1.01–1.28) and decreased risk for ONAP (adjusted HR = 0.85; 95% CI 0.74–0.96), although these effects were specific to one ESR band (7–10 mm/hr). Familial confounding explained ESR-IQ but not ESR-psychoses associations. IQ partly mediated the ESR-psychosis relationships.
Conclusions
Lower IQ is associated with low-grade systemic inflammation and with an increased risk of schizophrenia and ONAP in adulthood. Low-grade inflammation may influence schizophrenia risk by affecting neurodevelopment. Future studies should explore the differential effects of inflammation on different types of psychosis.
To identify training needs of the next generation of psychiatrists and barriers in prescribing first-generation antipsychotics (FGAs). We have surveyed psychiatry trainees in East Anglia with regard to their training experience, knowledge and attitudes to the use of oral FGAs as regular medication.
Results
Two-thirds of trainees were aware that first- and second-generation antipsychotics (SGAs) have similar efficacy, and a similar proportion perceived the older drugs to have more or ‘stronger’ side-effects. Lack of training experience was noted as the second leading concern for prescribing FGAs. A quarter of trainees received no training exposure to the older drugs and two-thirds had never initiated these drugs themselves. Although nearly 90% of trainees felt confident about initiating an oral SGA as a regular medication, only about 40% felt confident with FGAs (P<0.001).
Clinical implications
The survey highlights worrying gaps in training. FGAs can be used effectively, minimising side-effects, by careful dose titration, avoiding antipsychotic polypharmacy, high-dose, and high-potency drugs, thus ensuring they are not lost to future generations of psychiatrists.