We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The home-field advantage (HFA) hypothesis establishes that plant litter decomposes faster at ‘home’ sites than in ‘away’ sites due to more specialized decomposers acting at home sites. This hypothesis has predominantly been tested through ‘yes or no’ transplanting experiments, where the litter decomposition of a focal species is quantified near and away from their conspecifics. Herein, we evaluated the occurrence and magnitude of home-field effects on the leaf litter decomposition of Myrcia ramuliflora (O.Berg) N. Silveira (Myrtaceae) along a natural gradient of conspecific litterfall input and also if home-field effects are affected by litter and soil traits. Litter decomposition of M. ramuliflora was assessed through litterbags placed in 39 plots in a tropical heath vegetation over a period of 12 months. We also characterized abiotic factors, litter layer traits, and litter diversity. Our results indicated the occurrence of positive (i.e. Home-field advantage) and negative (i.e. Home-field disadvantage) effects in more than half of the plots. Positive and negative effects occurred in a similar frequency and magnitude. Among all predictors tested, only the community weighted mean C/N ratio of the litterfall input was associated with home-field effects. Our results reinforce the lack of generality for home-field effects found in the literature and thus challenge the understanding of litter-decomposer interaction in tropical ecosystems.
The enzymatic activities of NTPDase and 5′nucleotidase are important to regulate the concentration of adenine nucleotides, known molecules involved in many physiological functions. Therefore, the objective of this study was to evaluate the activity of NTPDase and 5′nucleotidase in serum and liver tissue of rats infected by Fasciola hepatica. Rats were divided into two groups: uninfected control and infected. NTPDase activity for adenosine triphosphate (ATP) and ADP substrates in the liver was higher compared with the control group at 15 days post-infection (PI), while seric activity was lower. In addition, seric and hepatic samples did not show changes for 5′nucleotidase activity at this time. On the other hand, either NTPDase or 5′nucleotidase activities in liver homogenate and serum were higher at 87 days PI. Early in the infection, low NTPDase activity maintains an increase of ATP in the bloodstream in order to activate host immune response, while in hepatic tissue it decreases extracellular ATP to maintain a low inflammatory response in the tissue. As stated, higher NTPDase and 5′nucleotidase activities 87 days after infection in serum and tissue, probably results on an increased concentration of adenosine molecule which stimulates a Th2 immune response. Thus, it is possible to conclude that F. hepatica infections lead to different levels of nucleotide degradation when considering the two stages of infection studied, which influences the inflammatory and pathological processes developed by the purinergic system.
The aim of this study was to evaluate the purine levels of lambs experimentally infected with Haemonchus contortus. A total of 12 healthy lambs were divided into two groups, composed of 6 animals each: Group A represented the healthy animals (uninfected), while in Group B the animals were infected with 15 000 larvae of H. contortus. Blood was drawn on days 15, 45 and 75 post-infection (PI) in order to perform the purine analysis (ATP, ADP, AMP, adenosine, inosine, hypoxanthine, xanthine and uric acid) by high pressure liquid chromatography (HPLC) in serum. On day 15 PI a significant (P<0·05) increase in the levels of ATP and inosine was observed in the infected animals, unlike the levels of ADP, adenosine, xanthine and uric acid which were reduced. On day 45 PI a significant (P<0·05) increase in the ATP and xanthine levels in infected animals was observed, contrasting with reduced levels of ADP and uric acid. Finally, on day 75 PI an increase occurred in the levels of ATP, adenosine and hypoxanthine in infected lambs, concomitant with a reduction in the levels of ADP and uric acid (P<0·05). These changes in purine levels may influence the inflammatory process and the pathological events.
Email your librarian or administrator to recommend adding this to your organisation's collection.