We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Water wave overwash of a step by small steepness, regular incident waves is analysed using a computational fluid dynamics (CFD) model and a mathematical model, in two spatial dimensions. The CFD model is based on the two-phase, incompressible Navier–Stokes equations, and the mathematical model is based on the coupled potential-flow and nonlinear shallow-water theories. The CFD model is shown to predict vortices, breaking and overturning in the region where overwash is generated, and that the overwash develops into fast-travelling bores. The mathematical model is shown to predict bore heights and velocities that agree with the CFD model, despite neglecting the complicated dynamics where the overwash is generated. Evidence is provided to explain the agreement in terms of the underlying agreement of mass and energy fluxes.
A controversy at the 2016 IUCN World Conservation Congress on the topic of closing domestic ivory markets (the 007, or so-called James Bond, motion) has given rise to a debate on IUCN's value proposition. A cross-section of authors who are engaged in IUCN but not employed by the organization, and with diverse perspectives and opinions, here argue for the importance of safeguarding and strengthening the unique technical and convening roles of IUCN, providing examples of what has and has not worked. Recommendations for protecting and enhancing IUCN's contribution to global conservation debates and policy formulation are given.
Gravitational interactions allow one to investigate the nature of matter in the universe independent of the properties that make it luminous. Much as studies of the dynamics of galaxies and clusters of galaxies have indicated the presence of dark matter, gravitational lensing provides an independent probe of the large scale distribution of dark matter in the universe.
The fragmented ecosystems along the Niagara Escarpment World Biosphere Reserve provide important habitats for biota including lichens. Nonetheless, the Reserve is disturbed by dense human populations and associated air pollution. Here we investigated patterns of lichen diversity within urban and rural sites at three different locations (Niagara, Hamilton, and Owen Sound) along the Niagara Escarpment in Ontario, Canada. Our results indicate that both lichen species richness and community composition are negatively correlated with increasing human population density and air pollution. However, our quantitative analysis of community composition using canonical correspondence analysis (CCA) indicates that human population density and air pollution is more independent than might be assumed. The CCA analysis suggests that the strongest environmental gradient (CCA1) associated with lichen community composition includes regional pollution load and climatic variables; the second gradient (CCA2) is associated with local pollution load and human population density factors. These results increase the knowledge of lichen biodiversity for the Niagara Escarpment and urban and rural fragmented ecosystems as well as along gradients of human population density and air pollution; they suggest a differential influence of regional and local pollution loads and population density factors. This study provides baseline knowledge for further research and conservation initiatives along the Niagara Escarpment World Biosphere Reserve.
Approximately half of the variation in wellbeing measures overlaps with variation in personality traits. Studies of non-human primate pedigrees and human twins suggest that this is due to common genetic influences. We tested whether personality polygenic scores for the NEO Five-Factor Inventory (NEO-FFI) domains and for item response theory (IRT) derived extraversion and neuroticism scores predict variance in wellbeing measures. Polygenic scores were based on published genome-wide association (GWA) results in over 17,000 individuals for the NEO-FFI and in over 63,000 for the IRT extraversion and neuroticism traits. The NEO-FFI polygenic scores were used to predict life satisfaction in 7 cohorts, positive affect in 12 cohorts, and general wellbeing in 1 cohort (maximal N = 46,508). Meta-analysis of these results showed no significant association between NEO-FFI personality polygenic scores and the wellbeing measures. IRT extraversion and neuroticism polygenic scores were used to predict life satisfaction and positive affect in almost 37,000 individuals from UK Biobank. Significant positive associations (effect sizes <0.05%) were observed between the extraversion polygenic score and wellbeing measures, and a negative association was observed between the polygenic neuroticism score and life satisfaction. Furthermore, using GWA data, genetic correlations of -0.49 and -0.55 were estimated between neuroticism with life satisfaction and positive affect, respectively. The moderate genetic correlation between neuroticism and wellbeing is in line with twin research showing that genetic influences on wellbeing are also shared with other independent personality domains.
Gravitational lens surveys are of cosmological interest because they provide a way to measure the gravitational field of both luminous and dark matter. Many of the other methods used to detect the presence of dark matter, such as studies of galaxy rotation curves and cluster dynamics, require that there be luminous objects in the gravitational field that act as tracers of the mass. This may introduce a selection effect. In constrast, in studies of gravitational lenses, the beacon we observe can be far (at distances of order one thousand Mpc) from the gravitational field. In this paper we describe a VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales. We also present a preliminary result of the radio data: we find that the density of matter in the form of a uniform, comoving number density of 1011 to 1012M⊙ compact objects, luminous or dark, must be substantially less than the critical density.
We discuss GHRS spectra of single and binary late-type stars and describe in detail the spectra of α TrA and of ζ Aurigae obtained at ten orbital phases. The wind properties of α TrA are derived using a complete redistribution radiative transfer code, and we describe the properties of a new code, PRISMA, that we are building to fit line profiles using partial redistribution in a spherically-symmetric geometry. The ζ Aur spectra show that the mass loss process is variable on the timescale of several months, the wind density structure does not repeat from orbit to orbit, and the wind ionization structure is complex.
The Compton Gamma-Ray Observatory (C-GRO) has completed a full-sky survey during which the number of known γ-ray pulsars has more than doubled. COMPTEL has observed the classical pulsars Crab and Vela on several occasions and has derived detailed pulse patterns and spectral parameters in the 0.7-30 MeV energy interval. The new C-GROγ-ray pulsars have different properties in terms of energy spectra and light-curve shapes, and, in fact, only the Crab is seen by all four C-GRO instruments. This raises intriguing questions about the particle acceleration processes and beaming taking place in the neutron magnetosphere. We have examined the COMPTEL data to add information on these objects in the 0.7-30 MeV energy interval and present evidence for the detection of one of them, PSR B1509-58. We have also undertaken a search for candidate radio pulsars whose ephemerides are well defined. The results of these analyses are presented.
Subject headings: gamma rays: observations — pulsars: general
We present the first massive frequency analysis of the 1200 first overtone RR Lyrae stars in the Large Magellanic Cloud observed in the first 4.3 yr of the MACHO project. Besides the many new double-mode variables, we also discovered stars with closely spaced frequencies. These variables are most probably nonradial pulsators.
The Cosmic Background Explorer, launched November 18, 1989, has nearly completed its first full mapping of the sky with all three of its instruments: a Far Infrared Absolute Spectrophotometer (FIRAS) covering 0.1 to 10 mm, a set of Differential Microwave Radiometers (DMR) operating at 3.3, 5.7, and 9.6 mm, and a Diffuse Infrared Background Experiment (DIRBE) spanning 1 to 300 µm in ten bands. A preliminary map of the sky derived from DIRBE data is presented. Initial cosmological implications include: a limit on the Comptonization y parameter of 10−3, on the chemical potential μ parameter of 10−2, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy has the spectrum expected from a Doppler shift of a blackbody. There are no significant anisotropies in the microwave sky detected, other than from our own galaxy and a cosθ dipole anisotropy whose amplitude and direction agree with previous data. At shorter wavelengths, the sky spectrum and anisotropies are dominated by emission from ‘local’ sources of emission within our Galaxy and Solar System. Preliminary comparison of IRAS and DIRBE sky brightnesses toward the ecliptic poles shows the IRAS values to be significantly higher than found by DIRBE at 100 μm. We suggest the presence of gain and zero-point errors in the IRAS total brightness data. The spacecraft, instrument designs, and data reduction methods are described.
Major depressive disorder (MDD) is moderately heritable, however genome-wide association studies (GWAS) for MDD, as well as for related continuous outcomes, have not shown consistent results. Attempts to elucidate the genetic basis of MDD may be hindered by heterogeneity in diagnosis. The Center for Epidemiological Studies Depression (CES-D) scale provides a widely used tool for measuring depressive symptoms clustered in four different domains which can be combined together into a total score but also can be analysed as separate symptom domains.
Method
We performed a meta-analysis of GWAS of the CES-D symptom clusters. We recruited 12 cohorts with the 20- or 10-item CES-D scale (32 528 persons).
Results
One single nucleotide polymorphism (SNP), rs713224, located near the brain-expressed melatonin receptor (MTNR1A) gene, was associated with the somatic complaints domain of depression symptoms, with borderline genome-wide significance (pdiscovery = 3.82 × 10−8). The SNP was analysed in an additional five cohorts comprising the replication sample (6813 persons). However, the association was not consistent among the replication sample (pdiscovery+replication = 1.10 × 10−6) with evidence of heterogeneity.
Conclusions
Despite the effort to harmonize the phenotypes across cohorts and participants, our study is still underpowered to detect consistent association for depression, even by means of symptom classification. On the contrary, the SNP-based heritability and co-heritability estimation results suggest that a very minor part of the variation could be captured by GWAS, explaining the reason of sparse findings.
A theoretical model is used to study wave energy attenuation and directional spreading of ocean wave spectra in the marginal ice zone (MIZ). The MIZ is constructed as an array of tens of thousands of compliant circular ice floes, with randomly selected positions and radii determined by an empirical floe size distribution. Linear potential flow and thin elastic plate theories model the coupled water–ice system. A new method is proposed to solve the time-harmonic multiple scattering problem under a multidirectional incident wave forcing with random phases. It provides a natural framework for tracking the evolution of the directional properties of a wave field through the MIZ. The attenuation and directional spreading are extracted from ensembles of the wave field with respect to realizations of the MIZ and incident forcing randomly generated from prescribed distributions. The averaging procedure is shown to converge rapidly so that only a small number of simulations need to be performed. Far-field approximations are investigated, allowing efficiency improvements with negligible loss of accuracy. A case study is conducted for a particular MIZ configuration. The observed exponential attenuation of wave energy through the MIZ is reproduced by the model, while the directional spread is found to grow linearly with distance. The directional spreading is shown to weaken when the wavelength becomes larger than the maximum floe size.
A theoretical model of water wave overwash of a thin floating plate is proposed. The nonlinear shallow-water equations are used to model the overwash, and the linear potential-flow/thin-plate model to force it. Model predictions are compared with overwash depths measured during a series of laboratory wave basin experiments. The model is shown to be accurate for incident waves of low steepness or short length.
Community-acquired Staphylococcus aureus infections are a public health concern, yet little is known about infections that do not present to hospital. We identified community-onset S. aureus infections via specimens submitted to a community-based pathology service. Referring doctors confirmed eligibility and described infection site, severity and treatment. Isolates were characterized on antibiotic resistance, PFGE, MLST/SCCmec, and Panton–Valentine leukocidin (PVL), representing 106 community-onset infections; 34 non-multiresistant methicillin-resistant S. aureus (nmMRSA) (resistant to <3 non-β-lactam antibiotics), 15 multiply antibiotic-resistant MRSA (mMRSA) and 57 methicillin-sensitive S. aureus (MSSA). Most (93%) were skin and soft tissue infections. PVL genes were carried by 42% of nmMRSA isolates [95% confidence interval (CI) 26–61] and 15% of MSSA (95% CI 8–28). PVL was associated with infections of the trunk, head or neck (56·4% vs. 24·3%, P = 0·005) in younger patients (23 vs. 52 years, P < 0·001), and with boils or abscesses (OR 8·67, 95% CI 2·9–26·2), suggesting underlying differences in exposure and/or pathogenesis.
A series of wave basin experiments is reported that investigates the flexural response of one or two floating thin elastic discs to monochromatic waves. The work is motivated by numerical model validation. Innovative techniques are used to ensure the experimental configuration is consistent with the model. This demands linear motions, time-harmonic conditions, homogeneity of the plate and the restriction of horizontal motions of the disc or discs. An optical remote sensing device is employed to record the deflection of the discs accurately. Tests involving a single disc and two discs are conducted for a range of disc thicknesses, incident wave steepnesses, frequencies and, in the case of two discs, geometrical arrangements. A data processing technique is used to decompose the raw data into its spectral harmonics and filter the higher-order components. Pointwise comparisons of the linear first-order component of the experimental deflection with numerical predictions are presented. Satisfying agreement is found, although the model consistently over predicts the deflection. Disc–disc interactions are observed in the two-disc tests. A brief discussion of the shortcomings of the pointwise analysis, with associated possible sources of discrepancy, provides a link to the study reported in Part 2 (Montiel et al.J. Fluid Mech., vol. 723, 2013, pp. 629–652).