We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Do language skills affect investment decisions? This article addresses this question by identifying the effect of English proficiency on the stock market participation of immigrants in the United States and Australia. To establish causality, we construct an instrumental variable for English proficiency by exploiting the phenomenon that younger children acquire languages more easily than older children. We find that English proficiency has a significant positive effect on stock ownership among immigrants in both countries. Moreover, we provide evidence that a reduction in information costs and an increase in trust may serve as the mechanisms underlying the language ability effect.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
The validity of network observations is sometimes of concern in empirical studies, since observed networks are prone to error and may not represent the population of interest. This lack of validity is not just a result of random measurement error, but often due to systematic bias that can lead to the misinterpretation of actors’ preferences of network selections. These issues in network observations could bias the estimation of common network models (such as those pertaining to influence and selection) and lead to erroneous statistical inferences. In this study, we proposed a simulation-based sensitivity analysis method that can evaluate the robustness of inferences made in social network analysis to six forms of selection mechanisms that can cause biases in network observations—random, homophily, anti-homophily, transitivity, reciprocity, and preferential attachment. We then applied this sensitivity analysis to test the robustness of inferences for social influence effects, and we derived two sets of analytical solutions that can account for biases in network observations due to random, homophily, and anti-homophily selection.
Distinguishing between hypertrophic cardiomyopathy and other causes ofleft ventricular hypertrophy can be difficult in children. We hypothesised that cardiac MRI T1 mapping could improve diagnosis of paediatric hypertrophic cardiomyopathy and that measures of myocardial function would correlate with T1 times and extracellular volume fraction.
Methods:
Thirty patients with hypertrophic cardiomyopathy completed MRI with tissue tagging, T1-mapping, and late gadolinium enhancement. Left ventricular circumferential strain was calculated from tagged images. T1, partition coefficient, and synthetic extracellular volume were measured at base, mid, apex, and thickest area of myocardial hypertrophy. MRI measures compared to cohort of 19 healthy children and young adults. Mann–Whitney U, Spearman’s rho, and multivariable logistic regression were used for statistical analysis.
Results:
Hypertrophic cardiomyopathy patients had increased left ventricular ejection fraction and indexed mass. Hypertrophic cardiomyopathy patients had decreased global strain and increased native T1 (−14.3% interquartile range [−16.0, −12.1] versus −17.3% [−19.0, −15.7], p < 0.001 and 1015 ms [991, 1026] versus 990 ms [972, 1001], p = 0.019). Partition coefficient and synthetic extracellular volume were not increased in hypertrophic cardiomyopathy. Global native T1 correlated inversely with ejection fraction (ρ = −0.63, p = 0.002) and directly with global strain (ρ = 0.51, p = 0.019). A logistic regression model using ejection fraction and native T1 distinguished between hypertrophic cardiomyopathy and control with an area under the receiver operating characteristic curve of 0.91.
Conclusion:
In this cohort of paediatric hypertrophic cardiomyopathy, strain was decreased and native T1 was increased compared with controls. Native T1 correlated with both ejection fraction and strain, and a model using native T1 and ejection fraction differentiated patients with and without hypertrophic cardiomyopathy.
A conventional Differential GPS (DGPS) techniques-based velocity and acceleration method (named here as ‘DVA’) may be difficult to implement in the Antarctic as there is a sparse distribution of reference stations over Antarctica. Thus, in order to overcome the baseline limitations and to obtain highly accurate and reliable velocity and acceleration estimates for airborne gravimetry, a network-based velocity and acceleration determination approach (named here as ‘NVA’), which introduces a wide network of stations and is independent of precise clock information, is applied. Here its performance for velocity and acceleration determination is fully exploited by using Global Positioning System (GPS), GLONASS, Galileo and BeiDou observations. Additionally, a standalone receiver-based method named ‘SVA’, which requires precise clock information, is also implemented for comparison. During static tests and a flight experiment over Antarctica, it was found that the NVA method yields more robust results than the SVA and DVA methods when applied to a wide area network. Moreover, the addition of GLONASS, Galileo and BeiDou systems can increase the accuracy of velocity and acceleration estimates by 39% and 43% with NVA compared to a GPS-only solution.
Preference-based measures of health-related quality of life play a key role in the calculation of Quality-Adjusted Life Years (QALYs) for Health Technology Assessment (HTA). The Child Health Utility 9D (CHU9D) is a new preference-based instrument designed specifically for application in children and adolescents (aged 7 to 17 years). This study aimed to compare Chinese and Australian adolescent population preferences for CHU9D health states using profile case best worst scaling (BWS) methods.
METHODS:
Fifty CHU9D health states (blocked into five survey versions) were generated for valuation using a fractional factorial design. Study participants were recruited through an online panel company in Australia, and through primary and secondary schools in China. A latent class modelling framework was adopted for econometric analysis.
RESULTS:
A total of 1,982 respondents (51 percent female) in Australia and 902 respondents (43 percent female) in China provided useable survey responses. Latent class analysis indicated the existence of preference heterogeneity for both population groups. In the Australian sample, respondents in Class I placed the most importance on the mental health dimensions of the CHU9D (for example, Worried and Annoyed) and the least importance on daily activities (for example, Activities, Daily routine, Sleep), whilst respondents in Class II placed equal weights on all attributes. In the Chinese sample, respondents in Class I placed the most importance on the Activities dimension of the CHU9D and the least importance on the Annoyed dimension, whist Class II placed the most importance on the Schoolwork dimension and the least importance on Pain.
CONCLUSIONS:
This study has provided important cross-country insights into the use of profile case BWS methods to elicit health state preferences with young people for application in HTA in children and adolescents. The differential latent classes identified between Australia and China highlights the necessity to derive country-specific adolescent scoring algorithms for the CHU9D instrument for application in HTA.
This study investigates the origins of discrete interpersonal emotions in team-member dyads using two independent samples from an education institute and a telecommunication services company in China. Results across both studies showed that the quality of team members’ dyadic relationships positively relates to interpersonal admiration, sympathy, and envy, and negatively relates to interpersonal contempt. Furthermore, teams’ cooperative goals moderate these dyad-level linkages. The association of relationship quality with interpersonal emotions is particularly pronounced in teams with less cooperative goals but buffered in teams with more cooperative goals. Finally, on the individual level of analysis, envy and contempt are inversely associated with team members’ work performance, objectively measured. These findings provide new insights about key antecedents and crucial moderators in the development of interpersonal emotions in Chinese work teams and reiterate the relevance of these emotions for tangible performance outcomes.
Background: Previous genome-wide association studies (GWAS) have identified a large number of genetic variants for obesity and its related traits, representing a group of potential key genes in the etiology of obesity. Emerging evidence suggests that epigenetics may play an important role in obesity. It has not been explored whether the GWAS-identified loci contribute to obesity through epigenetics (e.g., DNA (deoxyribonucleic acid) methylation) in addition to genetics. Method: A multi-stage cross-sectional study was designed. We did a literature search and identified 117 genes discovered by GWAS for obesity and its related traits. Then we analyzed whether the methylation levels of these genes were also associated with obesity in two genome-wide methylation panels. We examined an initial panel of seven adolescent obese cases and seven age-matched lean controls, followed by a second panel of 48 adolescent obese cases and 48 age- and gender-matched lean controls. The validated CpG sites were further replicated in two independent replication panels of youth (46 vs. 46 and 230 cases vs. 413 controls, respectively) and a general population of youth, including 703 healthy subjects. Results: One CpG site in the lymphocyte antigen 86 (LY86) gene, which showed higher methylation in the obese in both the initial (p = .009) and second genome-wide DNA methylation panel (p = .008), was further validated in both replication panels (meta p = .00016). Moreover, in the general population of youth, the methylation levels of this region were significantly correlated with adiposity indices (p ≤ .02), insulin resistance (p = .001), and inflammatory markers (p < .001). Conclusion: By focusing on recent GWAS findings in genome-wide methylation profiles, we identified a solid association between LY86 gene DNA methylation and obesity.
Little is known about the potential adherence to and the effectiveness of a low-carbohydrate (LC) diet on weight loss and cardiometabolic risk factors in Chinese adults with a habitually high carbohydrate intake. In the present controlled feeding trial, fifty overweight or obese women (age 47·9 (sem 0·9) years; BMI 26·7 (sem 0·3) kg/m2) were randomly assigned to a LC non-energy-restricted diet (initial carbohydrate intake 20 g/d, with a 10 g increase weekly) or an energy-restricted (ER) diet (carbohydrate intake 156–205 g/d, ER to 5021 or 6276 kJ/d, 35 % average energy reduction) for 12 weeks. Over the intervention period, the two diets had comparable compliance (96 %) and self-reported acceptability. At week 12, carbohydrate intake in the LC and ER groups contributed to 36·1 and 51·1 % of total energy, respectively (P< 0·001). Although both diets showed similarly decreased mean body weight (LC − 5·27 (95 % CI − 6·08, − 4·46) kg; ER − 5·09 (95 % CI − 5·50, − 4·67) kg, P= 0·67) and percentage of fat mass measured by dual-energy X-ray absorptiometry (LC − 1·19 (95 % CI − 1·88, − 0·50) %; ER − 1·56 (95 % CI − 2·20, − 0·92) %, P= 0·42), participants in the LC group had greater reductions in the ratio of total cholesterol:HDL-cholesterol (P= 0·03) and also in the ratio of TAG:HDL-cholesterol (P= 0·01) than those in the ER group. The present 12-week diet trial suggested that both a LC non-energy-restricted diet and an ER diet were acceptable to Chinese women and both diets were equally effective in reducing weight and fat mass. Moreover, the LC diet showed beneficial effects on blood lipid profiles.
We report the heterogeneous integration of a multifunctional sensor based on
polymer porous photonic bandgap (P3BG) structure and xerogel
based luminescence sensor technology. The P3BG structure was
fabricated using holographic interferometry. Initially, holographic
interferometry of a photo-activated prepolymer syrup that included a
volatile solvent as well as monomer, photoinitiator, and co-initiator was
used to initiate photopolymerization. Subsequent UV curing resulted in well
defined lamellae of the polymer separated by porous polymer regions that
created a high quality photonic bandgap structure. The resulting
P3BG structure was then integrated with the xerogel based
luminescence element to produce a luminescence sensor with a selective
narrow band reflector. The prototype xerogel based luminescence sensor
element consisted of an O2 sensing material based on spin coated
tetraethylorthosilane (TEOS) composite xerogel films containing tris
(4,7-diphenyl-1,10-phenanthroline) ruthenium (II)
([Ru(dpp)3]2+) luminophore. We demonstrated
enhancement of the signal-to-noise ratio (SNR) of this integrated
multifunctional sensor while maintaining the same sensitivity to
O2 sensing of the xerogel based element. The resulting
advantages and enhanced SNR of this integrated sensor will provide a
template for other luminescence based assays to support highly sensitive and
cost-effective sensor systems for biomedical applications.
Edited by
Judith M. Rumsey, National Institute of Mental Health, Bethesda, Maryland,Monique Ernst, National Institute of Mental Health, Bethesda, Maryland
Microbial fuel cells (MFCs) use microorganisms to simultaneously break down organic materials and generate electricity. One of the greatest challenges in the practical application of MFCs is to sufficiently increase their power generation. Nanomodified graphite carbon anodes were prepared for use in MFCs to enhance the electron transport from the microbes to the electrode. Nanomodification to the anodes included growth of nanoparticles and multi-walled carbon nanotubes (MWCNTs). Nanoparticles of various metals, including Au, Ni, Pd, and Fe, were synthesized through thermal annealing and Fe catalyzed MWCNTs were synthesized through chemical vapor deposition. Power density was measured in MFCs for each type of nanomodified electrodes. Significant increase in power density was observed for the MFC with anodes decorated with MWCNTs (with 50-100nm diameters).
Nanometer thin membranes with considerable application potential in micro mechanics and materials science can be prepared by transferring cross-linked monomolecular layers of polyisoprenes or polyisobutenes with ionic head groups from the water surface to solid substrates with holes. Especially if monolayers of low glass transition polymers are cross-linked, elastomeric membranes are obtained, which might find application in micro mechanical devices like membrane valves and pumps. Incorporation of hydrophobised colloids leads to composite membranes, which can be converted into porous membranes via removal of the colloids.
Chemical vapor deposition (CVD) of noble metal thin-films is increasingly important for future memory storage applications. Integration of ferroelectric perovskites and/or high permittivity oxides requires specialized metal interconnect technologies. Platinum and iridium are two preferred metal electrode materials being explored since they are highly resistant to corrosion and exhibit excellent stability at high temperatures. Further, the formation of stable oxides (IrO2) provides a mechanism for decreased inter-diffusion of oxygen and elemental film constituents, and provides improved reliability in silicon-based devices. CVD provides conformal electrode films that are required to achieve high-densities; high purity films of both platinum and iridium were deposited in this research, using (β-diketonate)Ir(I)L and (MeCp)Me3Pt(IV) as the precursors.
Concurrently, chemical etching of these metals is highly desirable for creating patterns of the electrical contacts and for CVD reactor cleaning. To date, etching of noble metal electrodes has relied upon physical sputtering or chemically assisted etching. In this paper, we also report the first chemical etching of iridium films under ambient conditions, such as room temperature.
We have studied smoothing kinetics of Rh (111) surfaces during low temperature annealing using in-situ real-time reflection high energy electron diffraction and scanning tunneling microscopy. The initial surface features were produced by low temperature homoepitaxial growth of Rh (111). Two types of surfaces were studied, surfaces with two-dimensional (2D) islands at submonolayer coverages, and those with 3D multilayered features. 2D islands coarsen rapidly at the onset of the anneal. 3D features are more stable initially. Their annealing process exhibits a distinct transition from an initial slow coarsening, characterized by a nearly linear growth of lateral size, to a rapid flattening. The activation energy for the transition is ˜ 0.6 eV. The observed behavior indicates that the smoothing kinetics in the low temperature regime is limited by adatom detachment from the step-edges, and that the fast process for the 3D features is made possible by the formation of a network of “chain-like” structures which provide new pathways for diffusion thus overcoming the slow detachment kinetics. These effects determine the low temperature stability of the non-equilibrium epitaxial morphologies.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.