We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Social and environmental factors such as poverty or violence modulate the risk and course of schizophrenia. However, how they affect the brain in patients with psychosis remains unclear.
Aims
We studied how environmental factors are related to brain structure in patients with schizophrenia and controls in Latin America, where these factors are large and unequally distributed.
Method
This is a multicentre study of magnetic resonance imaging in patients with schizophrenia and controls from six Latin American cities. Total and voxel-level grey matter volumes, and their relationship with neighbourhood characteristics such as average income and homicide rates, were analysed with a general linear model.
Results
A total of 334 patients with schizophrenia and 262 controls were included. Income was differentially related to total grey matter volume in both groups (P = 0.006). Controls showed a positive correlation between total grey matter volume and income (R = 0.14, P = 0.02). Surprisingly, this relationship was not present in patients with schizophrenia (R = −0.076, P = 0.17). Voxel-level analysis confirmed that this interaction was widespread across the cortex. After adjusting for global brain changes, income was positively related to prefrontal cortex volumes only in controls. Conversely, the hippocampus in patients with schizophrenia, but not in controls, was relatively larger in affluent environments. There was no significant correlation between environmental violence and brain structure.
Conclusions
Our results highlight the interplay between environment, particularly poverty, and individual characteristics in psychosis. This is particularly important for harsh environments such as low- and middle-income countries, where potentially less brain vulnerability (less grey matter loss) is sufficient to become unwell in adverse (poor) environments.
As a consequence of axenic growth and the elimination of accompanying bacterial flora, Entamoeba histolytica virulence decreases rapidly, and pathogenicity is lost. This paper evaluated the impact of vitamin supplementation on the pathogenicity of E. histolytica. Growth of E. histolytica trophozoites, cultured axenically in PEHPS (a Spanish acronym for the main ingredients – casein peptone, liver, pancreas extract and bovine serum) medium, with or without vitamins, exhibited a similar growth rate. However, the vitamin-enriched PEHPS preparations expressed 2.65 times more haemolytic activity (at 60 min: 98 vs 48%, P < 0.05), 2.5 times more phospholipase A2 activity at 150 min of incubation and generated more hepatic abscesses (88 vs 60%, P = 0.05) than the preparations without vitamins. The haemolytic and phospholipase A2 activity for the PEHPS − V preparations were restored following vitamin supplementation with A and D. These data highlight, for the first time, that vitamins and specifically vitamin A and D were essential for the recovery of amoebic virulence, lost through axenic growth.
In this work, the first results of the effects of temperature during the production of Se2- ions and the effect during the interaction of Cd2+ and Se2- ions in the synthesis process of CdSe nanoparticles are presented. The synthesis of CdSe was carried out by the colloidal technique, in the first one we used a temperature of 63 °C to produce Se2- ions and in the second one an interaction temperature of 49 °C. The samples were characterized using a Scanning Electron Microscope (SEM) and a Scanning Tunneling Microscope (STM). From the SEM micrographs it was possible to identify the thorns formation and irregular islands. STM micrographs reveal elliptical shapes with a regular electron cloud profile.
Widely distributed species such as Arbacia stellata adjust patterns of their life history according to local conditions. In the present study the reproductive cycle of this species was analysed throughout a sampling year. Gonadal development cycle, sex ratio, actual fecundity and oocyte size distribution were characterized and the relationship of these reproductive characteristics with environmental variables such as sea surface temperature, photoperiod, chlorophyll a and net primary production evaluated. Our results showed that A. stellata is a gonochoric sea urchin. Gametogenesis was classified into six stages for both sexes (immature, growth, pre-maturity I, pre-maturity II, mature and spawning) and no synchrony was observed for the gonads between individuals. The female to male ratio was close to 1:1 in most months. The gonadosomatic index (GSI) showed significant differences between sexes or months; however, the highest values were observed during spring, with positive correlation with chlorophyll a. No significant differences were observed in the maturity index (MI) between sexes, with a positive correlation with temperature but negative with chlorophyll. Actual fecundity showed wide variations throughout the year and correlation with chlorophyll a and temperature. Oocyte size distribution was unimodal and the predominant frequency was that of mature oocytes. The reproductive cycle of A. stellata has a semi-continuous pattern for both sexes and partial spawning throughout the year in the sampling site. We observed nutrient assimilation in the gonads during spring and a larger reproductive activity from late summer to early winter.
Healthy lifestyle habits are the cornerstone in the management of familial hypercholesterolaemia (FH). Nevertheless, dietary studies on FH-affected populations are scarce. The present study analyses dietary habits, adherence to a Mediterranean diet pattern and physical activity in an adult population with FH and compares them with their non-affected relatives.
Design
Cross-sectional study.
Setting
Data came from SAFEHEART, a nationwide study in Spain.
Participants
Individuals (n 3714) aged ≥18 years with a genetic diagnosis of FH (n2736) and their non-affected relatives (n 978). Food consumption was evaluated using a validated FFQ.
Results
Total energy intake was lower in FH patients v. non-affected relatives (P<0·005). Percentage of energy from fats was also lower in the FH population (35 % in men, 36 % in women) v. those non-affected (38 % in both sexes, P<0·005), due to the lower consumption of saturated fats (12·1 % in FH patients, 13·2 % in non-affected, P<0·005). Consumption of sugars was lower in FH patients v. non-affected relatives (P<0·05). Consumption of vegetables, fish and skimmed milk was higher in the FH population (P<0·005). Patients with FH showed greater adherence to a Mediterranean diet pattern v. non-affected relatives (P<0·005). Active smoking was lower and moderate physical activity was higher in people with FH, especially women (P<0·005).
Conclusions
Adult patients with FH report healthier lifestyles than their non-affected family members. They eat a healthier diet, perform more physical activity and smoke less. However, this patient group’s consumption of saturated fats and sugars still exceeds guidelines.
The incorporation of triturated tire particles as an aggregate in the concrete mixture is one of the ways to take advantage of this Waste Rubber (WR) in order to improve concrete properties, such as mechanical behavior. In this research we evaluated mechanical behavior of concrete specimens prepared with different amounts WR, which partially substituted the fine aggregate, under an indirect tensile test. In contrast with other’s researcher’s findings, our results show that the specimens with 5% WR present the highest value of indirect tensile strength (TP) of 4.36 MPa. Polynomial relationships between TP and compression strength (f´c), where Tp ranges from 0.1f´c to 0.2f´c. Specimens with the 0, 5 and 10% WR content show two types of failure: normal tension and tiple-cleft failure, described in the norm ASTM 1144-89. Nevertheless, specimens with 15 and 20% WR show a new failure not described in the norm, which is thought to be occurring due to the high amount of WR used.
We present radiocarbon (14C) in tree rings from Mexico City and a reconstruction of fossil CO2 concentrations for the last five decades, as part of a research program to understand the 14C dynamics in this complex urban area. Background values were established by 14C concentrations in tree rings from a nearby clean area. Agreement between background and NH-zone 2 values indicate Taxodium mucronatum is a good biomonitor for annual atmospheric 14C variations. Values for the urban tree rings were significantly lower than background values, indicating a 14C depletion from fossil CO2 emissions. There is an increasing trend of fossil CO2 between 1960 and 1990, in agreement with the population growth and the increasing demand for fossil fuels in Mexico City. Between 1990 and 2000, there is an apparent decrease in fossil CO2 concentration, increasing again after 2000. The decrease in 2000, despite being of the same magnitude as the overall uncertainty, may reflect environmental policies that improved the energy efficiency and reduced CO2 emissions in the area. The increase in fossil CO2 concentration between 2000 and 2010 may be attributable to the significant growth of motor vehicle usage in Mexico City, which made transportation the main energy-demanding and -emitting sector.
Head circumference in infants has been reported to predict brain size, total grey matter volume (GMV) and neurocognitive development. However, it is unknown whether it has predictive value on regional and subcortical brain volumes. We aimed to explore the relationship between several head circumference measurements since birth and distributions of GMV and subcortical volumes at later childhood. We examined seventy-four, Caucasian, singleton, term-born infants born to mothers randomised to receive fish oil and/or 5-methyltetrahydrofolate or placebo prenatal supplementation. We assessed head circumference at birth and at 4 and 10 years of age and cognitive abilities at 7 years of age. We obtained brain MRI at 10 years of age, on which we performed voxel-based morphometry, cortical surface extraction and subcortical segmentation. Analyses were controlled for sex, age, height, weight, family status, laterality and total intracranial volume. Prenatal supplementation did not affect head circumference at any age, cognitive abilities or total brain volumes. Head circumference at 4 years presented the highest correlation with total GMV, white matter volume and brain surface area, and was also strongly associated with GMV of frontal, temporal and occipital areas, as well as with caudate nucleus, globus pallidus, putamen and thalamus volumes. As relationships between brain volumes in childhood and several outcomes extend into adulthood, we have found that ages between 0 and 4 years as the optimal time for brain growth; postnatal factors might have the most relevant impact on structural maturation of certain cortical areas and subcortical nuclei, independent of prenatal supplementation.
This paper analyses the interdependence between environment and society in terms of socio-ecological webs, in which human and biophysical systems are linked. A quantitative model, based on canonical correlation analysis applied in Fuerteventura Island (Canary Archipelago), detected indicators of human–landscape relationships and predicted potential shifts based on simulated environmental changes. In the last few decades, the landscape of Fuerteventura Island has changed: natural components and cultural agrarian uses have decreased, while the population has increased due to immigration, mainly from mainland Spain and other European countries. The island shows a transition from a coupled local socio-ecosystem to one based on the interaction between environment and coastal tourism that decouples native inhabitants from the landscape and traditional land-use practices. As vulnerability and adaptation to climate change represent critical sets of potential interactions in Canary Islands, a model and a map of the socio-ecological system under four Intergovernmental Panel on Climate Change scenarios show rural decoupling through ‘deagrarianization’ and ‘deruralization’, as well as stronger links to the tourism system.
TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case–control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r −0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.
The objective of this study is to design and implement an intervention program centered on preventing functional dependence.
Methods:
A pre/post quasi-experimental (typical case) design study with a control group was conducted on a group of 75–90-year-old individuals with functional dependence (n = 59) at three nursing homes in Madrid (Spain). The intervention program consists of two types of activities developed simultaneously. Some focused on emotional well-being (nine 90-minute sessions, once per week), whereas others focused on improving participants’ physical condition (two 30-minute sessions, twice per week). The simple randomized participants included 59 elderly individuals (Intervention Group = 30, Control Group = 29) (mean age 86.80) [SD, 5. 19].
Results:
Fifty-nine participants were analyzed. The results indicate that the program is effective in improving mood, lowering anxiety levels (d = 0.81), and increasing both self-esteem (d = 0.65) and the perception of self-efficacy (d = 1.04). There are improvements in systolic pressure and functional dependence levels are maintained. Linear simple regression (independent variable pre-Barthel) shows that the pre-intervention dependence level can predict self-esteem after the intervention.
Conclusion:
We have demonstrated that the program is innovative with regard to bio-psychosocial care in elderly individuals, is based on actual practice, and is effective in increasing both self-esteem and self-efficacy. These variables positively affect functional capabilities and delay functional dependence.
In this article we evaluate ∼48km2 of airborne lidar data collected at a target density of 15 laser shots/m in central Yucatán, Mexico. This area covers parts of the sites of Chichén Itzá and Yaxuná, a kilometer-wide transect between these two sites, and a transect along the first few kilometers of Sacbé 1 from Yaxuná to Cobá. The results of our ground validation and mapping demonstrate that not all sizable archaeological features can be detected in the lidar images due to: (1) the slightly rolling topography interspersed with 1-6 m-high bedrock hummocks, which morphologically mimic house mounds, further complicated by the presence of low foundations; (2) the complex forest structure in central Yucatán, which has particularly dense near-ground understory resulting in a high number of mixed-signal ground and low vegetation returns which reduces the fidelity and accuracy of the bare-earth digital elevation models; and (3) the predominance of low archaeological features difficult to discern from the textural noise of the near-ground vegetation. In this article we explore different visualization techniques to increase the identification of cultural features, but we conclude that, in this portion of the Maya region, lidar should be used as a complement to traditional on-the-ground survey techniques.
We present the first submillimetric line survey of extragalactic sources carried out by APEX. The surveys cover the 0.8 mm atmospheric window from 270 to 370GHz toward NGC253, NGC4945 and Arp220. We found in NGC 253, 150 transitions of 26 molecules. For NGC 4945, 136 transitions of 24 molecules, and 64 transitions of 17 molecules for Arp 220. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in ratios between the Galactic Center and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the Galactic Center. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the Galactic Center. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation can not explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); Finally, we report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, abundance explain the claimed enhancement of HCN abundance in the AGN, due to the enhancement of the ionization rate by X-rays. The abundance is much larger than the Galactic center of the Milky Way.
Low-density steels, with an excellent combination of outstanding mechanical properties, ultimate tensile strength and specific weight reduction, have been attracting great attention as a new group of materials in many industrial applications, particularly in the automotive industry. The aim of this work was to characterize the microstructure of a Ti-containing low-density Fe-Mn-Al-C steel in the as-cast condition. For this purpose, Ti-containing low-density steel was melted in an induction furnace using high purity raw materials and cast into a metal ingot mold. Chemical composition of the studied steel was Fe-32Mn-7.0Al-2.2C-0.5Ti (wt%). Samples were prepared by standard metallographic technique (grinding and polishing) and chemically etched with 2% nital solution, in order to reveal the dendritic microstructure. Microstructure observations were performed by scanning electron microscopy and the chemical nature of the present phases was determined by energy-dispersive X-ray. X-ray diffraction was performed at room temperature using a diffractometer with Cu Kα radiation. Phase equilibria by thermodynamic calculations for the studied steel were performed using JMatPro® software package. In general, results revealed a finer dendritic microstructure composed of ferritic matrix and austenite islands. The presence of ferrite and austenite in the steel was also confirmed by X-ray diffraction.
Recently, the research team synthesized some scandium- and titanium-based oxide compounds, in order to analyze their thermoluminescent (TL) response [1-2]. The oxides mixture Sc2TiO5:Eu2Ti2O7:Sc2O3 was synthesized in equilibrium phase by solid state reaction at 1100 °C / 48 h. The structural characterization was performed by XRD and SEM. The TL properties of this oxide mixture were examined after exposing it to gamma radiation from a 60Co source. The glow curve showed two main glow peaks at 151 °C and 260 °C, yet the curve shape looks quite complex, revealing that it is composed by overlapped individual TL peaks, which was confirmed with the Tstop preheat method performed [3]. The linear dose-response between 150 to 600 Gy was obtained, followed by a slow saturation stage. The intensity of the glow curves increases as the radiation dose increases, and their maxima remain at the same temperature values, which indicates that the TL phenomenon follows first-order kinetics [4]. After ten irradiation-TL readout cycles at 500 Gy, good stability (SD 2.02 %) between TL integrated response and the exposure dose was found. It is concluded that Sc2TiO5:Eu2Ti2O7:Sc2O3 is a promising material to use as high-dose dosimeter.
The Mexico City Metropolitan Area (MCMA) produces a complex mixture of gases and aerosols from diverse sources, including burning of fossil fuels, biomass, and wastes, with a significant biogenic contribution. We present the first results of ongoing projects to study temporal and spatial variations of 14CO2 in the area. Temporal variations reconstructed from tree rings of Taxodium mucronatum indicate a considerable radiocarbon depletion, in accordance to the vast amount of fossil fuels burnt inside Mexico Valley, with values between 62 and 246‰ lower than background values for the 1962–1968 period, and lower by 51–88‰ for the 1983–2010 period. The lower dilution found for the last decades might indicate an increase in enriched 14CO2 sources. Results from the spatial distribution, as revealed from integrated CO2 samples and grasses from six points within the MCMA collected during the 2013 dry season, show variations between sites and sample types. For integrated CO2 samples, values range from 35.6‰ to 54.0‰, and for grasses between −86.8‰ and 40.7‰. For three of the sampling points, the grasses are significantly depleted, by up to ∼133‰, as compared to the corresponding integrated CO2 sample. This may result from differences in the carbon assimilation period and exposure to different CO2 sources. Higher-than-background Δ14C values were found for all integrated CO2 samples, presumably resulting from 14C-enriched CO2 derived from forest fires in the mountains during the sampling period. Results obtained so far confirm the complexity of the 14C cycle in the MCMA.
Currently, the research team is systematically studying the oxide compounds present in the ternary system In2O3-TiO2-MgO in order to analyze its thermoluminescent (TL) response. The oxide Mg1.5InTi0.5O4 present in this system was synthesized by a solid state reaction at 1350 °C in air. The X-ray powder diffraction pattern showed a spinel-type structure for this compound. In this work, this spinel, as well as its TL properties when exposed to beta particles, are being reported for the first time. The glow curve is simple and wide with a TL maximum located at 203 °C at 21.33 Gy. The peak shows a shift to lower temperatures and it increases its intensity, as the irradiation dose increases. The lineal behavior was observed between 10.66 to 341 Gy, and no saturation signs were observed. The relative sensitivity variation was 2.7% and standard deviation after ten consecutive irradiation - TL readout cycles was 1 %. The minimum detectable dose was 5.65 Gy for this spinel-type oxide [3]. These results suggest the possible application of Mg1.5InTi0.5O4 in dosimetry.
In many coastal areas substrate is the limiting resource for benthic
organisms. Some sessile species can be used as secondary substrate, reducing
competition and increasing coexistence. In southern Chile, annual
populations of Macrocystis pyrifera recruit and grow on the
shells of Crepipatella fecunda. This study describes
ecological interactions between the kelp and the slipper limpet over an
annual cycle. The degree of kelp overgrowth was established by collecting
sporophytes and through in situ submarine photography over
a 10 month period (starting when kelp recruits became visible and ending
when sporophytes were no longer present). Changes in the biochemical
composition of the limpet tissue were also recorded by chemical analyses, to
evaluate the potential effects (positive/neutral/negative) of kelp on
C. fecunda nutritional condition. The results indicate
that both species coexist, although kelp overgrowth may cause a decrease in
carbohydrates in C. fecunda tissues, restricted to the
period when the kelp forest reaches its maximum biomass. Individually, the
short duration of the maximum overgrowth period and the size reached by
C. fecunda females (up to 65 mm shell length) may enable
rapid limpet recovery, avoiding competitive exclusion. On a population
level, the M. pyrifera annual cycle generates the needed
‘break’ for C. fecunda populations, reducing the effects of
kelp overgrowth. Thus, in the view of the neutral effect of kelp overgrowth,
together with the positive effect of C. fecunda on
M. pyrifera recruitment described somewhere else, this
ecological interaction can be categorized as commensalism.
In this study, laboratory and field cage experiments were conducted to assess the performance of sterile mass-reared Mexican fruit fly Anastrepha ludens (Loew) irradiated at various doses. In small laboratory cages, the radiation dose was found to have no effect on adult emergence, flying adults or survival at 25 days. In field cages, non-irradiated males and males irradiated at 20 and 40 Gy were found to exhibit greater mating propensity than males irradiated at 60 and 80 Gy. In large field cages in competition with wild males, cohorts of flies (male and female) irradiated at the low dose of 40 Gy and wild non-irradiated flies mated randomly, while flies irradiated at the high standard dose of 80 Gy mated assortatively. Irrespective of the radiation dose, laboratory flies courted and attempted copulation significantly earlier in the day than wild flies. In large field cages, cohorts of flies irradiated at low doses, e.g. 40 Gy, tended to induce greater sterility into a cohort of wild flies than those irradiated at 80 Gy, but the difference was not significant. Our results suggest that lowering the radiation dose currently applied to mass-reared flies in the Mexican fruit fly eradication campaign would substantially improve male mating performance. This could result in greater sterility induction without posing a risk in areas where target pest populations naturally prevail and are under suppression during the early stages of eradication programmes.