We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite the existence of various levels of infection prevention and control (IPC) measures aimed at limiting the transmission of vancomycin-resistant enterococci (VRE) in hospitals, these measures are sometimes difficult to implement. Using an agent-based model (ABM), we simulated the transmission of VRE within and between 3 care units according to different IPC measures.
Methods:
The ABM was modelled on short-stay medical wards, represented by 2 conventional care units and 1 intensive care unit. The scenarios consisted of the simulation of various compliance rates of caregivers with regard to hand hygiene (HH) in different contexts of IPC measures: (1) standard precautions for all patients, (2) additional contact precautions for VRE-carrier patients, (3) geographical cohorting of carrier patients, and (4) creation of an isolation unit with dedicated staff.
Results:
With <50% HH compliance, the dissemination of VRE was not adequately controlled. With 80% compliance for all patients (ie, standard precautions scenario), there were no secondary VRE cases in 50% of the simulations, which represented the best scenario. A more realistic rate, 60% HH compliance for all patients, revealed interesting results. Implementing an isolation unit was effective only if the level of HH compliance was low. Patient cohorting was less effective.
Conclusions:
The present ABM showed that while contact precautions, geographic cohorting, and an isolation unit may represent good complements to standard precautions, they may theoretically not be necessary if HH is followed at a high level of compliance.