We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To quantify the occurrence of surgical-site infections (SSIs) in an Italian region and to estimate the proportion of potentially avoidable infections through benchmarking comparison.
Design:
Prospective study during 1 month based on a convenience sample of surgical patients admitted to 31 public hospitals. All of the patients undergoing an intervention included among the 44 operative procedures of the National Nosocomial Infections Surveillance (NNIS) System were enrolled. Ninety-five percent of the patients were actively observed after discharge for up to 30 days for all of the operations and for up to 1 year for operations involving implantation.
Results:
Among the 6,167 operative procedures studied, 290 infections were recorded (4.7 per 100 procedures), 206 (71%) of which were SSIs (3.3 per 100 procedures; 95% confidence interval, 2.9–3.9). One hundred thirty-five SSIs (65.5%) were superficial infections, 53 (25.7%) were deep infections, and 12 (5.8%) were organ–space infections; in 6 cases (2.9%), the type of SSI was not recorded. The frequency of SSIs observed in this study was significantly higher for several procedures than that expected when the NNIS System rates (standardized infection ratio [SIR] ranging from 1.77 to 6.42) or the Hungarian rates (SIR ranging from 1.28 to 3.04) were applied to the study population.
Conclusions:
The high intensity of postdischarge surveillance can in part explain the differences observed. To allow for meaningful benchmarking comparison, in addition to intrinsic patient risk, data on the intensity of postdischarge surveillance should be included in published reports.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.