We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantifying reasonable crop yield gaps and determining potential regions for yield improvement can facilitate regional plant structure adjustment and promote crop production. The current study attempted to evaluate the yield gap in a region at multi-scales through model simulation and farmer investigation. Taking the winter wheat yield gap in the Huang-Huai-Hai farming region (HFR) for the case study, 241 farmers’ fields in four typical high-yield demonstration areas were surveyed to determine the yield limitation index and attainable yield. In addition, the theoretical and realizable yield gap of winter wheat in 386 counties of the HFR was assessed. Results showed that the average field yield of the demonstration plots was 8282 kg/ha, accounting for 0.72 of the potential yield, which represented the highest production in the region. The HFR consists of seven sub-regions designated 2.1–2.7: the largest attainable yield gap existed in the 2.6 sub-region, in the southwest of the HFR, while the smallest was in the 2.2 sub-region, in the northwest of the HFR. With a high irrigated area rate, the yield gap in the 2.2 sub-region could hardly be reduced by increasing irrigation, while a lack of irrigation remained an important limiting factor for narrowing the yield gap in 2.3 sub-region, in the middle of the HFR. Therefore, a multi-scale yield gap evaluation framework integrated with typical field survey and crop model analysis could provide valuable information for narrowing the yield gap.
The strong-coupling mode, called the “quasimode”, is excited by stimulated Brillouin scattering (SBS) in high-intensity laser–plasma interactions. Also SBS of the quasimode competes with SBS of the fast mode (or slow mode) in multi-ion species plasmas, thus leading to a low-frequency burst behavior of SBS reflectivity. Competition between the quasimode and the ion-acoustic wave (IAW) is an important saturation mechanism of SBS in high-intensity laser–plasma interactions. These results give a clear explanation of the low-frequency periodic burst behavior of SBS and should be considered as a saturation mechanism of SBS in high-intensity laser–plasma interactions.
A large-scale network named the default mode network (DMN) dynamically cooperates and competes with an external attention system (EAS) to facilitate various cognitive functioning that is prominently impaired in schizophrenia. However, it is unclear whether the cognitive deficit in schizophrenia is related to the disrupted competition and/or cooperation between these two networks.
Method
A total of 35 schizophrenia patients and 30 healthy controls were scanned using gradient-echo echo-planar imaging during n-back working memory (WM) processing. Brain activities of the DMN and EAS were measured using general linear modelling of the functional magnetic resonance imaging data. Dynamic interaction between the DMN and EAS was decomposed into two directions using Granger causality analysis.
Results
We observed a significant failure of DMN suppression in patients with schizophrenia, which was significantly related to WM/attentional deficit. Granger causality modelling showed that in healthy controls, while the EAS inhibitorily influenced the DMN, the DMN exerted an ‘excitatory’ or cooperative influence back on the EAS, especially in those with lower WM accuracy. In schizophrenia, this ‘excitatory’ DMN→EAS influence within the reciprocal EAS–DMN loop was significantly reduced, especially in patients with WM/attentional deficit.
Conclusions
The dynamic interaction between the DMN and EAS is likely to be comprised of both competitive and cooperative influences. In healthy controls, both the ‘inhibitory’ EAS→DMN interaction and ‘excitatory’ DMN→EAS interaction are correlated with WM performance. In schizophrenia, reduced ‘cooperative’ influence from the DMN to dorsal nodes of the EAS occurs in the context of non-suppression of the DMN and may form a possible pathophysiological substrate of WM deficit and attention disorder.
The rice leaf roller, Cnaphalocrocis medinalis (Guenée), is a serious insect pest of rice with a strong migratory ability. Previous studies on the migration of C. medinalis were mostly carried out in tropical or subtropical regions, however, and what the pattern of seasonal movements this species exhibits in temperate regions (i.e. Northern China, where they cannot overwinter) remains unknown. Here we present data from an 11-year study of this species made by searchlight trapping on Beihuang Island (BH, 38°24′N; 120°55′E) in the centre of the Bohai Strait, which provides direct evidence that C. medinalis regularly migrates across this sea into northeastern agricultural region of China, and to take advantage of the abundant food resources there during the summer season. There was considerable seasonal variation in number of C. medinalis trapped on BH, and the migration period during 2003–2013 ranged from 72 to 122 days. Some females trapped in June and July showed a relatively higher proportion of mated and a degree of ovarian development suggesting that the migration of this species is not completely bound by the ‘oogenesis-flight syndrome’. These findings revealed a new route for C. medinalis movements to and from Northeastern China, which will help us develop more effective management strategies against this pest.
Convergent studies have highlighted the dysfunction of the amygdala, prefrontal cortex and hippocampus in post-traumatic stress disorder (PTSD). However, only a few studies have investigated the functional connectivity between brain regions in PTSD patients during the resting state, which may improve our understanding of the neuropathophysiology of PTSD. The aim of this study was to investigate patterns of whole-brain functional connectivity in treatment-naive PTSD patients without co-morbid conditions who experienced the 8.0-magnitude earthquake in the Sichuan province of China.
Method
A total of 72 PTSD patients and 86 trauma-exposed non-PTSD controls participated in the resting-state functional magnetic resonance imaging study. All these subjects were recruited from the disaster zone of the 2008 Sichuan earthquake. Functional connectivities between 90 paired brain regions in PTSD patients were compared with those in trauma-exposed non-PTSD controls. Furthermore, Pearson correlation analysis was performed between significantly abnormal connectivities in PTSD patients and their clinician-administered PTSD scale (CAPS) scores.
Results
Compared with non-PTSD controls, PTSD patients showed weaker positive connectivities between the middle prefrontal cortex (mPFC) and the amygdala, hippocampus, parahippocampal gyrus and rectus, as well as between the inferior orbitofrontal cortex and the hippocampus. In addition, PTSD patients showed stronger negative connectivity between the posterior cingulate cortex (PCC) and the insula. The CAPS scores in PTSD patients correlated negatively with the connectivity between the amygdala and the mPFC.
Conclusions
PTSD patients showed abnormalities in whole-brain functional connectivity, primarily affecting the connectivities between the mPFC and limbic system, and connectivity between the PCC and insula.
Gattini and CSTAR have been installed at Dome A, Antarctica, which provide time-series photometric data for a large number of pulsating variable stars. We present the study for several variable stars with the data collected with the two facilities in 2009 to demonstrate the scientific potential of observations from Dome A for asteroseismology.
Dome A on the Antarctic plateau is likely one of the best observing sites on Earth (Saunders et al. 2009). We used the CSTAR telescope (Yuan et al. 2008) to obtain time-series photometry of 104 stars with i>14.5 mag during 128 days of the 2008 Antarctic winter season (Wang et al. 2011). During the 2010 season we observed 2 × 104 stars with i>15 mag for 183 days (Wang et al. 2012). We detected a total of 262 variables, a 6 × increase relative to previous surveys of the same area and depth carried out from temperate sites (Pojmanski 2004). Our observations show that high-precision, long-term photometry is possible from Antarctica and that astronomically useful data can be obtained during 80% of the winter season.
An intense electron-beam accelerator, which consists of a primary storage capacitor system, a magnetic core Tesla transformer, Blumlein pulse forming line of water dielectric, and a field-emission diode, are constructed and described. The experimental results show that the output voltage of transformer is more than 740 kV, the rise time is about 5 µs, the diode voltage is about 596 kV, electron beam current is about 60 kA, the duration is about 100 ns, and the power is 36 GW when charging voltage is 40 kV. It was suitable to drive magnetically insulated transmission line oscillator. And it can be also used in materials surface modification. This accelerator is very compact and works stably and reliably.
A high modulus, sulfonated polymer synthesized from one-to-one ratio 4,6-bis(4-hydroxyphenyl)-N, N-diphenyl-1,3,5-triazin-2-amine and 4,4′-biphenol with bis(4-fluorophenyl) sulfone (DPA-PS:BP) is exploited as an ionomer for micro-ionic actuators. A unique and attractive feature of the ionomer is that it can contain high amounts of ionic liquid (IL) as an electrolyte while maintaining a high elastic modulus (i.e 600 MPa for 150 wt% uptake), which is more than one order of magnitude higher than the state-of-the-art of ionomers with working electrolytes. Such a high modulus makes it possible for the ionomer to be fabricated into micro-actuators with high uptake of ILs and low operation voltage (< 4 V), in various free standing forms with ion milling techniques, which are attractive for MEMS applications. As an initial demonstration of a DPA-PS:BP based ionic micro-actuator, a cantilever (200 μm x 33 μm x 5 μm) is manufactured by Focused Ion Beam (FIB) and characterized. Under the voltage of 1.6 V, the bending actuator exhibits an intrinsic strain from the active ionomer of 1.1% and a corresponding blocking force of 27 μN.
Wafer bonding is an emerging technology for fabrication of complex three-dimensional (3D) structures; particularly it enables monolithic wafer-level 3D integration of high performance, multi-function microelectronic systems. For such a 3D integrated circuits, low-temperature wafer bonding is required to be compatible with the back-end-of-the-line processing conditions. Recently our investigation on surface melting characteristics of copper nanorod arrays showed that the threshold of the morphological changes of the nano-rod arrays occurs at a temperature significantly below the copper bulk melting point. With this unique property of the copper nanorod arrays, wafer bonding using copper nanorod arrays as a bonding intermediate layer was investigated at low temperatures (400 °C and lower). 200 mm Wafers, each with a copper nanorod array layer, were bonded at 200 – 400 °C and with a bonding down-force of 10 kN in a vacuum chamber. Bonding results were evaluated by razor blade test, mechanical grinding and polishing, and cross-section imaging using a focus ion beam/scanning electron microscope (FIB/SEM). The FIB/SEM images show that the copper nanorod arrays fused together accompanying by a grain growth at a bonding temperature of as low as 200 °C. A dense copper bonding layer was achieved at 400 °C where copper grains grew throughout the copper structure and the original bonding interface was eliminated. The sintering of such nanostructures depends not only on their feature size, but also significantly influenced by the bonding pressure. These two factors both contribute to the mass transport in the nanostructure, leading to the formation of a dense bonding layer.
Planarization efficiency is a key parameter to evaluate the process effectiveness of CMP. When the Cu thickness was removed beyond the step height, under certain conditions, the recessed trenches become protruded, resulting in reverse topography. This reverse topography during bulk Cu removal can only be attributed to the low down force polishing, electrical driving Cu removal and Cu passivation mechanism in ECMP process. In this paper, the concept of reverse topography is introduced and the removal selectivity difference on the trench area and field area during bulk Cu removal is discussed. In ECMP, a “real” 100% planarization efficiency can be achieved when the Cu thickness removed is less than the trench step height. This new understanding in planarization efficiency sheds lights on ways to improve CMP productivity
EcmpTM is a revolutionary planarization technology uniquely combining removal rate controlled by charge with superior planarization efficiency in the near no shear regime. In addition, the electrochemical removal mechanism has excellent within-wafer profile control. Multiple electrical zones configuration combined with a precise end-point control by electric charge, make it more predictable to control the remaining thickness and profile of copper film. The factors affecting the planarization such as the concentration and the efficiency of the inhibitors will be discussed in this paper. Meanwhile a planarization mechanism for Ecmp will be proposed to match the high planarization efficiency. The effects of applied voltage on removal rate and planarization efficiency will be presented in this paper. The electrical feature allows Ecmp to be a planarization process with removal rate independent of down force, enabling a wide removal rate window based on applied voltage.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.