We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work investigated the photophysical pathways for light absorption, charge generation, and charge separation in donor–acceptor nanoparticle blends of poly(3-hexylthiophene) and indene-C60-bisadduct. Optical modeling combined with steady-state and time-resolved optoelectronic characterization revealed that the nanoparticle blends experience a photocurrent limited to 60% of a bulk solution mixture. This discrepancy resulted from imperfect free charge generation inside the nanoparticles. High-resolution transmission electron microscopy and chemically resolved X-ray mapping showed that enhanced miscibility of materials did improve the donor–acceptor blending at the center of the nanoparticles; however, a residual shell of almost pure donor still restricted energy generation from these nanoparticles.
Schizotypy refers to schizophrenia-like traits below the clinical threshold in the general population. The pathological development of schizophrenia has been postulated to evolve from the initial coexistence of ‘brain disconnection’ and ‘brain connectivity compensation’ to ‘brain connectivity decompensation’.
Methods
In this study, we examined the brain connectivity changes associated with schizotypy by combining brain white matter structural connectivity, static and dynamic functional connectivity analysis of diffusion tensor imaging data and resting-state functional magnetic resonance imaging data. A total of 87 participants with a high level of schizotypal traits and 122 control participants completed the experiment. Group differences in whole-brain white matter structural connectivity probability, static mean functional connectivity strength, dynamic functional connectivity variability and stability among 264 brain sub-regions of interests were investigated.
Results
We found that individuals with high schizotypy exhibited increased structural connectivity probability within the task control network and within the default mode network; increased variability and decreased stability of functional connectivity within the default mode network and between the auditory network and the subcortical network; and decreased static mean functional connectivity strength mainly associated with the sensorimotor network, the default mode network and the task control network.
Conclusions
These findings highlight the specific changes in brain connectivity associated with schizotypy and indicate that both decompensatory and compensatory changes in structural connectivity within the default mode network and the task control network in the context of whole-brain functional disconnection may be an important neurobiological correlate in individuals with high schizotypy.
We report on an analytical and numerical study of the dynamics of a three-dimensional array of identical magnetic flux tubes in the reduced-magnetohydrodynamic description of the plasma. We propose that the long-time evolution of this system is dictated by flux-tube mergers, and that such mergers are dynamically constrained by the conservation of the pertinent (ideal) invariants, viz. the magnetic potential and axial fluxes of each tube. We also propose that in the direction perpendicular to the merging plane, flux tubes evolve in a critically balanced fashion. These notions allow us to construct an analytical model for how quantities such as the magnetic energy and the energy-containing scale evolve as functions of time. Of particular importance is the conclusion that, like its two-dimensional counterpart, this system exhibits an inverse transfer of magnetic energy that terminates only at the system scale. We perform direct numerical simulations that confirm these predictions and reveal other interesting aspects of the evolution of the system. We find, for example, that the early time evolution is characterized by a sharp decay of the initial magnetic energy, which we attribute to the ubiquitous formation of current sheets. We also show that a quantitatively similar inverse transfer of magnetic energy is observed when the initial condition is a random, small-scale magnetic seed field.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Current available antidepressants exhibit low remission rate with a long response lag time. Growing evidence has demonstrated acute sub-anesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant effects. However, a long term use of ketamine tends to elicit its adverse reactions. The present study aimed to investigate the antidepressant-like effects of intermittent and consecutive administrations of ketamine on chronic unpredictable mild stress (CUMS) rats, and to determine whether ketamine can redeem the time lag for treatment response of classic antidepressants. The behavioral responses were assessed by the sucrose preference test, forced swimming test, and open field test. In the first stage of experiments, all the four treatment regimens of ketamine (10 mg/kg ip, once daily for 3 or 7 consecutive days, or once every 7 or 3 days, in a total 21 days) showed robust antidepressant-like effects, with no significant influence on locomotor activity and stereotype behavior in the CUMS rats. The intermittent administration regimens produced longer antidepressant-like effects than the consecutive administration regimens and the administration every 7 days presented similar antidepressant-like effects with less administration times compared with the administration every 3 days. In the second stage of experiments, the combination of ketamine (10 mg/kg ip, once every 7 days) and citalopram (20 mg/kg po, once daily) for 21 days caused more rapid and sustained antidepressant-like effects than citalopram administered alone. In summary, repeated sub-anesthestic doses of ketamine can redeem the time lag for the antidepressant-like effects of citalopram, suggesting the combination of ketamine and classic antidepressants is a promising regimen for depression with quick onset time and stable and lasting effects.
The aim of this study was to develop and externally validate a simple-to-use nomogram for predicting the survival of hospitalised human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients (hospitalised person living with HIV/AIDS (PLWHAs)). Hospitalised PLWHAs (n = 3724) between January 2012 and December 2014 were enrolled in the training cohort. HIV-infected inpatients (n = 1987) admitted in 2015 were included as the external-validation cohort. The least absolute shrinkage and selection operator method was used to perform data dimension reduction and select the optimal predictors. The nomogram incorporated 11 independent predictors, including occupation, antiretroviral therapy, pneumonia, tuberculosis, Talaromyces marneffei, hypertension, septicemia, anaemia, respiratory failure, hypoproteinemia and electrolyte disturbances. The Likelihood χ2 statistic of the model was 516.30 (P = 0.000). Integrated Brier Score was 0.076 and Brier scores of the nomogram at the 10-day and 20-day time points were 0.046 and 0.071, respectively. The area under the curves for receiver operating characteristic were 0.819 and 0.828, and precision-recall curves were 0.242 and 0.378 at two time points. Calibration plots and decision curve analysis in the two sets showed good performance and a high net benefit of nomogram. In conclusion, the nomogram developed in the current study has relatively high calibration and is clinically useful. It provides a convenient and useful tool for timely clinical decision-making and the risk management of hospitalised PLWHAs.
In this paper, a novel continuous fiber reinforced piezoelectric composite (CFRPC) actuator is proposed to improve the stability and reliability of piezoelectric actuators. A piezoelectric driving structure composed of a cantilever beam and the CFRPC actuator is utilized to research the actuation performance of the CFRPC actuator. The expression of the equivalent moment for the CFRPC actuator is obtained using the equivalent load method and electro-mechanical coupling theory. Based on Euler-Bernoulli beam theory, the analytical expression of the deflection for the cantilever beam is derived. The accuracy of the obtained analytical expressions is demonstrated by finite element simulation as well as published experimental results. The actuation performance of the CFRPC actuator is investigated through the analytical expressions of the equivalent moment and deflection. The results show that the key parameters such as driving voltage, fiber volume fraction, cantilever beam height, actuator height, actuator length and actuator position have great influence on the actuation performance of the CFRPC actuator. The CFRPC actuator has good mechanical and electrical properties, and has a wide application prospect in the field of structural shape control.
This paper focus on the mechanical and martensitic transformation behaviors of axially functionally graded shape memory alloy (AFG SMA) beams. It is taken into consideration that material properties, such as austenitic elastic modulus, martensitic elastic modulus, critical transformation stresses and maximum transformation strain vary continuously along the longitudinal direction. According to the simplified linear SMA constitutive equations and Bernoulli-Euler beam theory, the formulations of stress, strain, martensitic volume fraction and governing equations of the deflection, height and length of transformed layers are derived. Employing the Galerkin’s weighted residual method, the governing differential equation of the deflection is solved. As an example, the bending behaviors of an AFG SMA cantilever beam subjected to an end concentrated load are numerically analyzed using the developed model. Results show that the mechanical and martensitic transformation behaviors of the AFG SMA beam are complex after the martensitic transformation of SMA occurs. The influences of FG parameter on the mechanical behaviors and geometrical shape of transformed regions are obvious, and should be considered in the design and analysis of AFG SMA beams in the related regions.
Enhancing the supply of arginine (Arg), a semi-essential amino acid, has positive effects on immune function in dairy cattle experiencing metabolic stress during early lactation. Our objective was to determine the effects of Arg supplementation on biomarkers of liver damage and inflammation in cows during early lactation. Six Chinese Holstein lactating cows with similar BW (508 ± 14 kg), body condition score (3.0), parity (4.0 ± 0), milk yield (30.6 ± 1.8 kg) and days in milk (20 ± days) were randomly assigned to three treatments in a replicated 3 × 3 Latin square design balanced for carryover effects. Each period was 21 days with 7 days for infusion and 14 days for washout. Treatments were (1) Control: saline; (2) Arg group: saline + 0.216 mol/day l-Arg; and (3) Alanine (Ala) group: saline + 0.868 mol/day l-Ala (iso-nitrogenous to the Arg group). Blood and milk samples from the experimental cows were collected on the last day of each infusion period and analyzed for indices of liver damage and inflammation, and the count and composition of somatic cells in milk. Compared with the Control, the infusion of Arg led to greater concentrations of total protein, immunoglobulin M and high density lipoprotein cholesterol coupled with lower concentrations of haptoglobin and tumor necrosis factor-α, and activity of aspartate aminotransferase in serum. Infusion of Ala had no effect on those biomarkers compared with the Control. Although milk somatic cell count was not affected, the concentration of granulocytes was lower in response to Arg infusion compared with the Control or Ala group. Overall, the biomarker analyses indicated that the supplementation of Arg via the jugular vein during early lactation alleviated inflammation and metabolic stress.
Some studies have shown that the excessive metabolic heat production is the primary cause for dead chicken embryos during late embryonic development. Increasing heat shock protein (HSP) expression and adjusting metabolism are important ways to maintain body homeostasis under heat stress. This study was conducted to investigate the effects of in ovo injection (IOI) of vitamin C (VC) at embryonic age 11th day (E11) on HSP and metabolic genes expression. A total of 320 breeder eggs were randomly divided into normal saline and VC injection groups. We detected plasma VC content and rectal temperature at chick’s age 1st day, and the mRNA levels of HSP and metabolic genes in embryonic livers at E14, 16 and 18, analysed the promoter methylation levels of differentially expressed genes and predicted transcription factors at the promoter regions. The results showed that IOI of VC significantly increased plasma VC content and decreased rectal temperature (P < 0.05). In ovo injection of VC significantly increased heat shock protein 60 (HSP60) and pyruvate dehydrogenase kinase 4 (PDK4) genes expression at E16 and PDK4 and secreted frizzled related protein 1 (SFRP1) at E18 (P < 0.05). At E16, IOI of VC significantly decreased the methylation levels of total CpG sites and −336 CpG site in HSP60 promoter and −1137 CpG site in PDK4 promoter (P < 0.05). Potential binding sites for nuclear factor-1 were found around −389 and −336 CpG sites in HSP60 promoter and potential binding site for specificity protein 1 was found around −1137 CpG site in PDK4 promoter. Our results suggested that IOI of VC increased HSP60, PDK4 and SFRP1 genes expression at E16 and 18, which may be associated with the demethylation in gene promoters. Whether IOI of VC could improve hatchability needs to be further verified by setting uninjection group.
Ceramics are strong but brittle. According to the classical theories, ceramics are brittle mainly because dislocations are suppressed by cracks. Here, the authors report the combined elastic and plastic deformation measurements of nanoceramics, in which dislocation-mediated stiff and ductile behaviors were detected at room temperature. In the synchrotron-based deformation experiments, a marked slope change is observed in the stress–strain relationship of MgAl2O4 nanoceramics at high pressures, indicating that a deformation mechanism shift occurs in the compression and that the nanoceramics sample is elastically stiffer than its bulk counterpart. The bulk-sized MgAl2O4 shows no texturing at pressures up to 37 GPa, which is compatible with the brittle behaviors of ceramics. Surprisingly, substantial texturing is seen in nanoceramic MgAl2O4 at pressures above 4 GPa. The observed stiffening and texturing indicate that dislocation-mediated mechanisms, usually suppressed in bulk-sized ceramics at low temperature, become operative in nanoceramics. This makes nanoceramics stiff and ductile.
Introduction: Emergency department (ED) staff carry a high risk for the burnout syndrome of increased emotional exhaustion, depersonalization and decreased personal accomplishment. Previous research has shown that task-oriented coping skills were associated with reduced levels of burnout compared to emotion-oriented coping. ED staff at one hospital participated in an intervention to teach task-oriented coping skills. We hypothesized that the intervention would alter staff coping behaviors and ultimately reduce burnout. Methods: ED physicians, nurses and support staff at two regional hospitals were surveyed using the Maslach Burnout Inventory (MBI) and the Coping Inventory for Stressful Situations (CISS). Surveys were performed before and after the implementation of communication and conflict resolution skills training at the intervention facility (I) consisting of a one-day course and a small group refresher 6 to 15 months later. Descriptive statistics and multivariate analysis assessed differences in staff burnout and coping styles compared to the control facility (C) and over time. Results: 85/143 (I) and 42/110 (C) ED staff responded to the initial survey. Post intervention 46 (I) and 23(C) responded. During the two year study period there was no statistically significant difference in CISS or MBI scores between hospitals (CISS: (Pillai's trace = .02, F(3,63) = .47, p = .71, partial η2 = .02); MBI: (Pillai's trace = .01, F(3,63) = .11, p = .95, partial η2 = .01)) or between pre- and post-intervention groups (CISS: (Pillai's trace = .01, F(3,63) = .22, p = .88, partial η2 = .01); MBI: (Pillai's trace = .09, F(3,63) = 2.15, p = .10, partial η2 = .01)). Conclusion: We were not able to measure improvement in staff coping or burnout in ED staff receiving communication skills intervention over a two year period. Burnout is a multifactorial problem and environmental rather than individual factors may be more important to address. Alternatively, to demonstrate a measurable effect on burnout may require more robust or inclusive interventions.
Distinguishing a disorder of persistent and impairing grief from normative grief allows clinicians to identify this often undetected and disabling condition. As four diagnostic criteria sets for a grief disorder have been proposed, their similarities and differences need to be elucidated.
Methods
Participants were family members bereaved by US military service death (N = 1732). We conducted analyses to assess the accuracy of each criteria set in identifying threshold cases (participants who endorsed baseline Inventory of Complicated Grief ⩾30 and Work and Social Adjustment Scale ⩾20) and excluding those below this threshold. We also calculated agreement among criteria sets by varying numbers of required associated symptoms.
Results
All four criteria sets accurately excluded participants below our identified clinical threshold (i.e. correctly excluding 86–96% of those subthreshold), but they varied in identification of threshold cases (i.e. correctly identifying 47–82%). When the number of associated symptoms was held constant, criteria sets performed similarly. Accurate case identification was optimized when one or two associated symptoms were required. When employing optimized symptom numbers, pairwise agreements among criteria became correspondingly ‘very good’ (κ = 0.86–0.96).
Conclusions
The four proposed criteria sets describe a similar condition of persistent and impairing grief, but differ primarily in criteria restrictiveness. Diagnostic guidance for prolonged grief disorder in International Classification of Diseases, 11th Edition (ICD-11) functions well, whereas the criteria put forth in Section III of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) are unnecessarily restrictive.
We synthesized precision oligomers of thiophene with cationic and hydrophobic side chains to mimic the charge, hydrophobicity, and molecular size of antibacterial host defense peptides (HDPs). In this study, the source of cationic charge was a guanidinium salt moiety intended to reflect the structure of arginine-rich HDPs. Due to the pi-conjugated oligo(thiophene) backbone structure, these compounds absorb visible light in aqueous solution and react with dissolved oxygen to produce highly biocidal reactive oxygen species (ROS). Thus, the compounds exert bactericidal activity in the dark with dramatically enhanced potency upon visible light illumination. We find that guanylation of primary amine groups enhanced the activity of the oligomers in the dark but also mitigated their light-induced activity enhancement. In addition, we also quantified their toxicity to mammalian cell membranes using a hemolysis assay with red blood cells, in the light and dark conditions.
Rabies is one of the major public health problems in China, and the mortality rate of rabies remains the highest among all notifiable infectious diseases. A meta-analysis was conducted to investigate the post-exposure prophylaxis (PEP) vaccination rate and risk factors for human rabies in mainland China. The PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese Science and Technology Periodical and Wanfang databases were searched for articles on rabies vaccination status (published between 2007 and 2017). In total, 10 174 human rabies cases from 136 studies were included in this meta-analysis. Approximately 97.2% (95% confidence interval (CI) 95.1–98.7%) of rabies cases occurred in rural areas and 72.6% (95% CI 70.0–75.1%) occurred in farmers. Overall, the vaccination rate in the reported human rabies cases was 15.4% (95% CI 13.7–17.4%). However, among vaccinated individuals, 85.5% (95% CI 79.8%–83.4%) did not complete the vaccination regimen. In a subgroup analysis, the PEP vaccination rate in the eastern region (18.8%, 95% CI 15.9–22.1%) was higher than that in the western region (13.3%, 95% CI 11.1–15.8%) and this rate decreased after 2007. Approximately 68.9% (95% CI 63.6–73.8%) of rabies cases experienced category-III exposures, but their PEP vaccination rate was 27.0% (95% CI 14.4–44.9%) and only 6.1% (95% CI 4.4–8.4%) received rabies immunoglobulin. Together, these results suggested that the PEP vaccination rate among human rabies cases was low in mainland China. Therefore, standardised treatment and vaccination programs of dog bites need to be further strengthened, particularly in rural areas.
Recent progress in microdissection and in DNA sequencing has facilitated the subsampling of multi-focal cancers in organs such as the liver in several hundred spots, helping to determine the pattern of mutations in each of these spots. This has led to the construction of genealogies of the primary, secondary, tertiary, and so forth, foci of the tumor. These studies have led to diverse conclusions concerning the Darwinian (selective) or neutral evolution in cancer. Mathematical models of the development of multi-focal tumors have been devised to support these claims. We offer a model for the development of a multi-focal tumor: it is a mathematically rigorous refinement of a model of Ling et al. (2015). Guided by numerical studies and simulations, we show that the rigorous model, in the form of an infinite-type branching process, displays distributions of tumor size which have heavy tails and moments that become infinite in finite time. To demonstrate these points, we obtain bounds on the tails of the distributions of the process and an infinite series expansion for the first moments. In addition to its inherent mathematical interest, the model is corroborated by recent literature on apparent super-exponential growth in cancer metastases.
An electromechanical coupling model is established for the space-tethered combination (STC) under microgravity environment after target capture by the tethered robot system (TRS). A linearized dynamic model of the STC is put forward with its controllability and observability as a control system analyzed. A double closed-loop tension control strategy is proposed to mitigate the impact and suing longitudinal vibration caused by the velocity difference between the platform and target. Experiment setup is built on a ground-based flotation platform to investigate the impact of the STC. Results of simulation and experimental validation show that the proposed tension control strategy is responsive and rapid in tension tracking and effectively prevent impact.
Active drag reduction of an Ahmed body with a slant angle of
$25^{\circ }$
, corresponding to the high-drag regime, has been experimentally investigated at Reynolds number
$Re=1.7\times 10^{5}$
, based on the square root of the model cross-sectional area. Four individual actuations, produced by steady blowing, are applied separately around the edges of the rear window and vertical base, producing a drag reduction of up to 6–14 %. However, the combination of the individual actuations results in a drag reduction 29 %, higher than any previous drag reductions achieved experimentally and very close to the target (30 %) set by automotive industries. Extensive flow measurements are performed, with and without control, using force balance, pressure scanner, hot-wire, flow visualization and particle image velocimetry techniques. A marked change in the flow structure is captured in the wake of the body under control, including the flow separation bubbles, over the rear window or behind the vertical base, and the pair of C-pillar vortices at the two side edges of the rear window. The change is linked to the pressure rise on the slanted surface and the base. The mechanisms behind the effective control are proposed. The control efficiency is also estimated.