We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Apolipoprotein E (APOE) E4 is the main genetic risk factor for Alzheimer’s disease (AD). Due to the consistent association, there is interest as to whether E4 influences the risk of other neurodegenerative diseases. Further, there is a constant search for other genetic biomarkers contributing to these phenotypes, such as microtubule-associated protein tau (MAPT) haplotypes. Here, participants from the Ontario Neurodegenerative Disease Research Initiative were genotyped to investigate whether the APOE E4 allele or MAPT H1 haplotype are associated with five neurodegenerative diseases: (1) AD and mild cognitive impairment (MCI), (2) amyotrophic lateral sclerosis, (3) frontotemporal dementia (FTD), (4) Parkinson’s disease, and (5) vascular cognitive impairment.
Methods:
Genotypes were defined for their respective APOE allele and MAPT haplotype calls for each participant, and logistic regression analyses were performed to identify the associations with the presentations of neurodegenerative diseases.
Results:
Our work confirmed the association of the E4 allele with a dose-dependent increased presentation of AD, and an association between the E4 allele alone and MCI; however, the other four diseases were not associated with E4. Further, the APOE E2 allele was associated with decreased presentation of both AD and MCI. No associations were identified between MAPT haplotype and the neurodegenerative disease cohorts; but following subtyping of the FTD cohort, the H1 haplotype was significantly associated with progressive supranuclear palsy.
Conclusion:
This is the first study to concurrently analyze the association of APOE isoforms and MAPT haplotypes with five neurodegenerative diseases using consistent enrollment criteria and broad phenotypic analysis.
In order to improve a large posterior glottal gap and/or aspiration, injections of augmentation substances should not only be administered at the mid-membranous vocal fold in the thyroarytenoid muscle, but also at the cartilaginous portion of the vocal fold to make adduction arytenopexy possible.
Method
Ten adult human larynges were investigated using the whole-organ serial section technique.
Results
Vertical thickness of the posterior aspect of the thyroarytenoid muscle was relatively thin (3.4 ± 0.4 mm), especially in females (3.2 ± 0.3 mm). Consequently, care should be taken to ensure the correct depth of needle placement. If the needle is placed too deep, augmentation substances are injected into the lateral cricoarytenoid muscle, located beneath the thyroarytenoid muscle, or into the paraglottic space, located inferolateral to the thyroarytenoid muscle.
Conclusion
The injection location and the amount of injected material should be modified based on the pathological conditions of the voice disorder and aspiration.
Measurements in the infrared wavelength domain allow direct assessment of the physical state and energy balance of cool matter in space, enabling the detailed study of the processes that govern the formation and evolution of stars and planetary systems in galaxies over cosmic time. Previous infrared missions revealed a great deal about the obscured Universe, but were hampered by limited sensitivity.
SPICA takes the next step in infrared observational capability by combining a large 2.5-meter diameter telescope, cooled to below 8 K, with instruments employing ultra-sensitive detectors. A combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With mechanical coolers the mission lifetime is not limited by the supply of cryogen. With the combination of low telescope background and instruments with state-of-the-art detectors SPICA provides a huge advance on the capabilities of previous missions.
SPICA instruments offer spectral resolving power ranging from R ~50 through 11 000 in the 17–230 μm domain and R ~28.000 spectroscopy between 12 and 18 μm. SPICA will provide efficient 30–37 μm broad band mapping, and small field spectroscopic and polarimetric imaging at 100, 200 and 350 μm. SPICA will provide infrared spectroscopy with an unprecedented sensitivity of ~5 × 10−20 W m−2 (5σ/1 h)—over two orders of magnitude improvement over what earlier missions. This exceptional performance leap, will open entirely new domains in infrared astronomy; galaxy evolution and metal production over cosmic time, dust formation and evolution from very early epochs onwards, the formation history of planetary systems.
We have detected a large cold HI cloud consisting of several fragments in the region south of the Chamaeleon I dark cloud. The cold HI cloud is shown to be a future site of star formation.
The cold HI cloud in the region of the M17SW giant molecular cloud comprises three major fragments with a mean size of ~ 30 pc. Their overall distribution is rather similar to that of CO gas, but one of the fragments does not seem to have a molecular counterpart. It is shown that such a cloud is also a future site of star formation.
The liver fluke, Opisthorchis viverrini, and the minute intestinal fluke, Haplorchis taichui, are prevalent in many Asian countries. This study analysed the patterns of infections of O. viverrini and H. taichui in Lahanam and Thakhamlien villages (Savannakhet Province, Lao PDR), in two cross-sectional investigations. Out of a total of 207 human participants, post-anthelmintic treatment positivity rates for expelled worms were 170 (82.1%) for H. taichui and 65 (31.4%) for O. viverrini. Both these species co-exist in the study villages. When each parasite was analysed separately, H. taichui infections reached a plateau among people aged >20 years. Opisthorchis viverrini infection rates were highest in the age group 21–30 years, with decreasing infection rates after the age of 30. Our findings indicated that fish-borne trematode infections were more prevalent among adults. Fish, common intermediate hosts, were acquired in the study area for analysis. The examination of 35 species of fish as intermediate hosts found O. viverrini metacercariae in only six species, and these were found mostly during the month of November. Many farmers who live on the rice fields obtain their food from their immediate environment, including these intermediate-host fish, potentially putting them at greater risk of O. viverrini infection. By contrast, H. taichui metacercariae were found in three species of fish obtained from the market, meaning that anyone could consume them and become infected. If people who work in rice fields limit the species of fish they consume, or avoid consuming raw fish during the month of November, they may reduce their risk of O. viverrini infection.
Many endemic species, particularly those on remote islands, have been driven to extinction or near extinction by anthropogenic influences. The short-tailed albatross Phoebastria albatrus once numbered in the millions but was thought to be extinct by the mid 20th century. Albatrosses, of the family Diomedeidae, are among the most threatened birds globally as a result of commercial exploitation, introduced predators, and mortality in commercial fisheries. We applied an experimental approach over 5 years to evaluate the translocation and hand-rearing of albatross chicks by comparing growth, physiological health indices, post-fledging survival, and migration patterns with a control group of naturally reared chicks in the source population. Hand-reared chicks had comparable or superior health and similar rates of immediate post-fledging mortality (15%), with mortality strongly female-biased in both groups. Hand-reared birds had longer post-fledging drift periods before attaining sustained flight (also female-biased) but comparable, albeit somewhat wider ranging, migration patterns to naturally reared chicks during their first 6 months at sea. Recruitment to the translocation site of a breeding pair that included a hand-reared bird occurred within 5 years of the first translocation. Success will ultimately depend on continued recruitment and breeding over the coming decades, given delayed breeding in these long-lived species. The results to date, however, have exceeded initial expectations and can inform potential reintroductions of other long-lived, migratory avian species with strong natal philopatry, and reintroductions of native species to former breeding islands.
The association between depression after myocardial infarction and increased risk of mortality and cardiac morbidity may be due to cardiac disease severity.
Aims
To combine original data from studies on the association between post-infarction depression and prognosis into one database, and to investigate to what extent such depression predicts prognosis independently of disease severity.
Method
An individual patient data meta-analysis of studies was conducted using multilevel, multivariable Cox regression analyses.
Results
Sixteen studies participated, creating a database of 10 175 post-infarction cases. Hazard ratios for post-infarction depression were 1.32 (95% CI 1.26–1.38, P<0.001) for all-cause mortality and 1.19 (95% CI 1.14–1.24, P<0.001) for cardiovascular events. Hazard ratios adjusted for disease severity were attenuated by 28% and 25% respectively.
Conclusions
The association between depression following myocardial infarction and prognosis is attenuated after adjustment for cardiac disease severity. Still, depression remains independently associated with prognosis, with a 22% increased risk of all-cause mortality and a 13% increased risk of cardiovascular events per standard deviation in depression z-score.
Ten ice-sheet models are used to study sensitivity of the Greenland and Antarctic ice sheets to prescribed changes of surface mass balance, sub-ice-shelf melting and basal sliding. Results exhibit a large range in projected contributions to sea-level change. In most cases, the ice volume above flotation lost is linearly dependent on the strength of the forcing. Combinations of forcings can be closely approximated by linearly summing the contributions from single forcing experiments, suggesting that nonlinear feedbacks are modest. Our models indicate that Greenland is more sensitive than Antarctica to likely atmospheric changes in temperature and precipitation, while Antarctica is more sensitive to increased ice-shelf basal melting. An experiment approximating the Intergovernmental Panel on Climate Change’s RCP8.5 scenario produces additional first-century contributions to sea level of 22.3 and 8.1 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 14 cm, respectively. By 200 years, projections increase to 53.2 and 26.7 cm, respectively, with ranges of 79 and 43 cm. Linear interpolation of the sensitivity results closely approximates these projections, revealing the relative contributions of the individual forcings on the combined volume change and suggesting that total ice-sheet response to complicated forcings over 200 years can be linearized.
We present a detailed study carried out on oxide buffer layers grown by Metal-Organic Decomposition (MOD) on metallic substrates for YBa2Cu3O7-x (YBCO) coated conductor applications. Precursor solutions have been made starting from acetates or pentanedionates and characterized by means of Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) analyses coupled with Fourier Transform Infra-Red spectroscopy (FT-IR). Thin buffer layers have been grown by spin-coating on Ni-5at.%W substrates. X-ray diffraction spectra (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) have been employed in order to optimize buffer layers in terms of film microstructure and surface quality, with the final aims of producing a suitable template for YBCO growth. It will be shown that the optimization of the recrystallization process can lead to high quality buffer layer allowing the growth of YBCO films showing good superconductive properties.
In order to understand the vacancy behavior during incubation period before steady state void swelling, positron annihilation lifetime measurements was performed after isochronal annealing of austenitic stainless steel (Ti added modified SUS316SS) and ferritic stainless steel (F82H) irradiated by neutrons and electrons to a dose of 0.2 dpa. By electron and neutron irradiations below 363 K, vacancies and nano-voids containing of few vacancies were formed in both alloys. By increasing annealing temperatures, the lifetime decreased without forming nano-voids. The change of lifetime during the annealing indicated the formation and growth of staking fault tetrahedra (Ti added modified SUS316SS) and the annihilation of vacancies at precipitates (F82H).
Capillary type underfill is still the mainstream underfill for mass production flip chip applications. Flip chip packages are migrating to ultra low-k, Pb-free, 3D and fine pitch packages. Underfill selection is becoming more critical. This paper discusses the performance and potential of underfills using a novel organic-inorganic hybrid polymer technology.
Compared to eutectic and high lead solder, tin-silver-copper solder has lower C.T.E., higher elasticity and greater brittleness. In light of these properties, it is generally better to select high Tg and lower CTE underfill in order to prevent bump fatigue during reliability testing. Given the brittleness of low-k dielectric layers of flip chips, the destruction of low-k layers by stress inside the flip chip packages has become a major issue. Underfills for low-k packages should have low stress, and the warpage should be small. It is expected that as the low-k trend expands, the underfill is required to provide less stress. Low Tg underfill shows lower warpage. New chemical technologies have been developed to address the needs of underfills for low-k/Pb-free flip chip packages, specifically organic-inorganic hybrid polymer compounds. The organic-inorganic hybrid polymer provides excellent cure properties which enable a balanced combination of low stress and good bump protection. The material properties of the underfill were characterized using Differential Scanning Calorimetry (DSC), Thermo-Mechanical Analysis (TMA), and Dynamic Mechanical Analysis (DMA). A daisy-chained test vehicle was used for reliability testing. A detailed study is presented on the underfill properties, reliability data, as well as finite element modeling results.
In this study, we are doing R&D for directional dark matter search with nuclear
emulsion. First of all, higher resolution nuclear emulsion with fine silver halide
crystals was developed in the production facility of emulsion at Nagoya university, and we
confirmed that it can detect the expected nuclear recoil tracks. The readout of submicron
tracks was required the new technology. We developed the expansion technique, and could
readout the signal by shape analysis with optical microscopy. The two dimensional angular
resolution is 36 degrees at the original track length of range from 150 nm to 200 nm with
optical microscopy. Finally we demonstrated by using recoiled nuclei induced by 14.8 MeV
neutron, and confirmed the technique. Moreover, we developed the X-ray microscope system
with SPring-8 as final check with higher resolution of selected candidate tracks with
optical microscopy. The angular resolution was improved from 31 degree with optical
microscopy to 17 degree with X-ray microscopy at the track length of range from 150 nm to
250 nm. We are developing the practical system and planning for start of the test running
with prototype detector.
To improve the conversion efficiency of polymer photodetectors (PDs) fabricated by solution process, the properties of fluorene-type polymer photodetectors doped with iridium (Ir) and platinum (Pt) complexes were investigated. The devices based on poly(dioctylfluorene) and poly(dioctylfluorene-co-benzothiadiazole) (F8BT) had violet and blue sensitivity, respectively. Triplet materials can enhance the incident-photon-to-current conversion efficiency of the devices utilizing the fluorene-type polymers when their triplet levels are lower than the lowest excited singlet states of the host and higher than the lowest excited triplet states of the host. The transmission of a moving picture was successfully demonstrated using the bilayer F8BT device with green Ir complex as an opto-electrical conversion device. We demonstrate that the polymer PDs fabricated by solution process can be applied to short-range optical communication fields, such as opto-electrical conversion devices for optical links.
A total of 100 serum samples including 22 acute phase sera and 39 paired sera collected from clinically diagnosed cases of leptospirosis in Ming-shan County, Sichuan Province, China were examined by the one-point microcapsule agglutination test (MCAT), which was developed in Japan, and by conventional microscopic agglutination tests (MAT). The one-point MCAT is more reactive to IgM antibody than MAT and is superior in detecting antibodies in the early stages of the disease.
A thin-amorphous MnOx layer using self-forming barrier process with a Cu-Mn alloy shows good adhesion and diffusion barrier properties between copper and dielectric layer, resulting in excellent reliability for stress and electromigration. Meanwhile, chemical vapor deposition (CVD) can be employed for conformal deposition of the barrier layer in narrow trenches and vias for future technology node. In our previous research, a thin and uniform amorphous MnOx layer could be formed on TEOS-oxide by thermal metal-organic CVD (MOCVD), showing a good diffusion barrier property. In addition, a good adhesion strength is necessary between a Cu line and a dielectric layer not only to ensure good SM and EM resistance but also to prevent film delamination under mechanical or thermal stress conditions during fabrication process such as chemical mechanical polishing or high temperature annealing. To date, no information is available with regard to the adhesion property of CVD-MnOx. In this work, we report diffusion barrier property in further detail and adhesion property in PVD-Cu/CVD-MnOx/SiO2/Si. The temperature dependence of the adhesion property is correlated with the chemical composition and valence state of Mn investigated with SIMS and Raman spectroscopy.
Substrates were p-type Si wafers having a plasma-TEOS oxide of 100nm in thickness. CVD was carried out in a deposition chamber. A manganese precursor was vaporized and introduced into the deposition chamber with H2 carrier gas. After the CVD, a Cu overlayer was deposited on some samples using a sputtering system in load lock chamber of the CVD machine. The diffusion barrier property of the MnOx film was investigated in annealed samples at 400 oC for 100 hours in a vacuum of better than 1.0×10-5 Pa. The Adhesion property of Mn oxide was investigated by Scotch tape test in the as-deposited and in the annealed Cu/CVD-MnOx/TEOS samples. The obtained samples were analyzed for thickness and microstructure with TEM, chemical bonding states of the MnOx layer with XPS, and composition of each layer with SIMS.
In the CVD deposition below 300 °C, no Cu delamination was observed both in the as-deposited and in the annealed Cu/CVD-MnOx/SiO2 samples. On the other hand, in the CVD deposition at 400 °C, the Cu films were delaminated from the CVD-MnOx/TEOS substrates. The XPS peak position of Mn 2p and Mn 3s spectra indicated that the valence state of Mn in the as-deposited barrier layer below 400 °C was 2+. Composition analysis with SIMS as well as Raman also indicated the presence of a larger amount of carbon at 400 °C than at less than 300 °C. The good adhesion between Cu and MnO could be attributed to an amount of carbon inclusion in the CVD barrier layer.
Photoelectrochemical properties of Ga- and N-face GaN grown by hydride vapor phase epitaxy (HVPE) were investigated. The properties were also compared with Ga-face GaN grown by metal-organic vapor phase epitaxy (MOVPE). The flatband potentials were in order of Ga-face GaN grown by MOVPE < N-face GaN < Ga-face GaN. The highest photocurrent density at zero bias was obtained from the N-face GaN. The photocurrent density was over 3 times larger than that of Ga-face GaN.
Early results from the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the tidally-disrupted, low-metallicity Small Magellanic Cloud) Spitzer legacy program are presented. These early results concentrate on the SAGE-SMC MIPS observations of the SMC Tail region. This region is the high H i column density portion of the Magellanic Bridge adjacent to the SMC Wing. We detect infrared dust emission and measure the gas-to-dust ratio in the SMC Tail and find it similar to that of the SMC Body. In addition, we find two embedded cluster regions that are resolved into multiple sources at all MIPS wavelengths.
The Microlensing Observations in Astrophysics (MOA) is a microlensing survey conducted at Mt. John Observatory in New Zealand. We searched transiting planet candidates from the MOA-I Galactic bulge data, which have been obtained with a 61cm B&C telescope from 2000 to 2005 for a microlensing search. Although this survey data were dedicated to microlensing, they are also quite useful for searching transiting objects because of the large number of stars monitored (~7 million) and the long span of the survey (~6 years). From our analysis, we found 58 transiting planet candidates. We are planning to follow up these candidates with high-precision spectroscopic and photometric observations for further selection, toward the detection of planets by radial velocity observations.