We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we review typical paradigms employed in investigations of startle modification at long lead intervals. We also summarize some of the basic phenomena associated with long lead interval startle modification. Such phenomena include the facilitation or inhibition of startle magnitude as a function of lead stimulus intensity and duration, cardiac deceleration, the modalities of the lead stimulus and the startle probe, whether participants are instructed to attend to or ignore the lead stimulus, and the emotional valence and arousal of the lead stimulus. Both relevant animal and human studies are reviewed, some of which have appeared previously only in doctoral dissertations. In addition, we discuss some of the conceptual issues that have driven much of this research, highlighting particular controversies that have received more attention, such as whether the relationship between lead stimulus intensity and startle amplitude is actually an inverted-U function, and what are the relative contributions of attentional and emotional processes in long lead startle modification.
Introduction
A burst of sound punctures the empty silence. Though brief, the noise burst is sufficiently intense to startle the hearer, producing a reflex blink. Now imagine that instead of being superimposed on silence, the noise burst follows a prior stimulus of several seconds duration – what we will refer to in this chapter as a “long lead stimulus.” What effect will that lead stimulus have on the hearer's startle blink to the subsequent noise burst? Will it mask the noise burst and thus attenuate the startle response? Will it summate with the noise burst and thus facilitate the reflex blink? Will it arouse and alert the listener, enhancing the reflex?
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.