We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An intermediate-depth (1751 m) ice core was drilled at the South Pole between 2014 and 2016 using the newly designed US Intermediate Depth Drill. The South Pole ice core is the highest-resolution interior East Antarctic ice core record that extends into the glacial period. The methods used at the South Pole to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the National Science Foundation Ice Core Facility (NSF-ICF), and the methods used to process and sample the ice at the NSF-ICF are described. The South Pole ice core exhibited minimal brittle ice, which was likely due to site characteristics and, to a lesser extent, to drill technology and core handling procedures.
Background: Chlorhexidine bathing reduces bacterial skin colonization and prevents infections in specific patient populations. As chlorhexidine use becomes more widespread, concerns about bacterial tolerance to chlorhexidine have increased; however, testing for chlorhexidine minimum inhibitory concentrations (MICs) is challenging. We adapted a broth microdilution (BMD) method to determine whether chlorhexidine MICs changed over time among 4 important healthcare-associated pathogens. Methods: Antibiotic-resistant bacterial isolates (Staphylococcus aureus from 2005 to 2019 and Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae complex from 2011 to 2019) were collected through Emerging Infections Program surveillance in 2 sites (Georgia and Tennessee) or through public health reporting in 1 site (Orange County, California). A convenience sample of isolates were collected from facilities with varying amounts of chlorhexidine use. We performed BMD testing using laboratory-developed panels with chlorhexidine digluconate concentrations ranging from 0.125 to 64 μg/mL. After successfully establishing reproducibility with quality control organisms, 3 laboratories performed MIC testing. For each organism, epidemiological cutoff values (ECVs) were established using ECOFFinder. Results: Among 538 isolates tested (129 S. aureus, 158 E. coli, 142 K. pneumoniae, and 109 E. cloacae complex), S. aureus, E. coli, K. pneumoniae, and E. cloacae complex ECVs were 8, 4, 64, and 64 µg/mL, respectively (Table 1). Moreover, 14 isolates had an MIC above the ECV (12 E. coli and 2 E. cloacae complex). The MIC50 of each species is reported over time (Table 2). Conclusions: Using an adapted BMD method, we found that chlorhexidine MICs did not increase over time among a limited sample of S. aureus, E. coli, K. pneumoniae, and E. cloacae complex isolates. Although these results are reassuring, continued surveillance for elevated chlorhexidine MICs in isolates from patients with well-characterized chlorhexidine exposure is needed as chlorhexidine use increases.
Head impact exposure (HIE) in youth football is a public health concern. The objective of this study was to determine if one season of HIE in youth football was related to cognitive changes.
Method:
Over 200 participants (ages 9–13) wore instrumented helmets for practices and games to measure the amount of HIE sustained over one season. Pre- and post-season neuropsychological tests were completed. Test score changes were calculated adjusting for practice effects and regression to the mean and used as the dependent variables. Regression models were calculated with HIE variables predicting neuropsychological test score changes.
Results:
For the full sample, a small effect was found with season average rotational values predicting changes in list-learning such that HIE was related to negative score change: standardized beta (β) = -.147, t(205) = -2.12, and p = .035. When analyzed by age clusters (9–10, 11–13) and adding participant weight to models, the R2 values increased. Splitting groups by weight (median split), found heavier members of the 9–10 cohort with significantly greater change than lighter members. Additionaly, significantly more participants had clinically meaningful negative changes: X2 = 10.343, p = .001.
Conclusion:
These findings suggest that in the 9–10 age cluster, the average seasonal level of HIE had inverse, negative relationships with cognitive change over one season that was not found in the older group. The mediation effects of age and weight have not been explored previously and appear to contribute to the effects of HIE on cognition in youth football players.
Emerging evidence is guiding changes in prehospital management of potential spinal injuries. The majority of settings related to current recommendations are in resource-rich environments (RREs), whereas there is a lack of guidance on the provision of spinal motion restriction (SMR) in resource-scarce environments (RSEs), such as: mass-casualty incidents (MCIs); low-middle income countries; complex humanitarian emergencies; conflict zones; and prolonged transport times. The application of Translational Science (TS) in the Disaster Medicine (DM) context was used to develop this study, leading to statements that can be used in the creation of evidence-based clinical guidelines (CGs).
Objective:
What is appropriate SMR in RSEs?
Methods:
The first round of this modified Delphi (mD) study was a structured focus group conducted at the World Association for Disaster and Emergency Medicine (WADEM) Congress in Brisbane Australia on May 9, 2019. The result of the focus group discussion of open-ended questions produced ten statements that were added to ten statements derived from Fischer (2018) to create the second mD round questionnaire.
Academic researchers and educators, operational first responders, or first receivers of patients with suspected spinal injuries were identified to be mD experts. Experts rated their agreement with each statement on a seven-point linear numeric scale. Consensus amongst experts was defined as a standard deviation ≤1.0. Statements that were in agreement reaching consensus were included in the final report; those that were not in agreement but reached consensus were removed from further consideration. Those not reaching consensus advanced to the third mD round.
For subsequent rounds, experts were shown the mean response and their own response for each of the remaining statements and asked to reconsider their rating. As above, those that did not reach consensus advanced to the next round until consensus was reached for each statement.
Results:
Twenty-two experts agreed to participate with 19 completing the second mD round and 16 completing the third mD round. Eleven statements reached consensus. Nine statements did not reach consensus.
Conclusions:
Experts reached consensus offering 11 statements to be incorporated into the creation of SMR CGs in RSEs. The nine statements that did not reach consensus can be further studied and potentially modified to determine if these can be considered in SMR CGs in RSEs.
The relationship between the subtypes of psychotic experiences (PEs) and common mental health symptoms remains unclear. The current study aims to establish the 12-month prevalence of PEs in a representative sample of community-dwelling Chinese population in Hong Kong and explore the relationship of types of PEs and common mental health symptoms.
Method
This is a population-based two-phase household survey of Chinese population in Hong Kong aged 16–75 (N = 5719) conducted between 2010 and 2013 and a 2-year follow-up study of PEs positive subjects (N = 152). PEs were measured with Psychosis Screening Questionnaire (PSQ) and subjects who endorsed any item on the PSQ without a clinical diagnosis of psychotic disorder were considered as PE-positive. Types of PEs were characterized using a number of PEs (single v. multiple) and latent class analysis. All PE-positive subjects were assessed with common mental health symptoms and suicidal ideations at baseline and 2-year follow-up. PE status was also assessed at 2-year follow-up.
Results
The 12-month prevalence of PEs in Hong Kong was 2.7% with 21.1% had multiple PEs. Three latent classes of PEs were identified: hallucination, paranoia and mixed. Multiple PEs and hallucination latent class of PEs were associated with higher levels of common mental health symptoms. PE persistent rate at 2-year follow-up was 15.1%. Multiple PEs was associated with poorer mental health at 2-year follow-up.
Conclusions
Results highlighted the transient and heterogeneous nature of PEs, and that multiple PEs and hallucination subtype of PEs may be specific indices of poorer common mental health.
In response to the International Liaison Committee on Resuscitation (ILCOR; Niel, Belgium) release of an updated recommendation related to out-of-hospital spinal immobilization (SI) practice in 2015, a systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist of English-language studies published from January 2000 through July 2019 on the use of SI in resource-scarce environments (RSEs). Studies meeting the following criteria were included in the analysis: peer-reviewed statistical studies or reports detailing management of potential traumatic spinal injury in RSE, civilian, and military environments; as well as consensus clinical guidelines, academic center, or professional association protocols or policy statements detailing management of potential traumatic spinal injury in RSE, civilian, and military environments; statistical analysis; and subsequent management of spinal injuries after mass-casualty incidents, in complex humanitarian events or conflict zones, low-to middle-income countries, or prolonged transport times published by government and non-government organizations. Studies excluded from consideration were those not related to a patient with a potential traumatic spinal injury after a mass-casualty incident, in complex humanitarian event or conflict zones, in low-to middle-income countries, or with prolonged transport times.
There were one thousand twenty-nine (1029) studies initially identified. After removal of duplicates, nine hundred-nineteen (919) were screened with eight hundred sixty-three (863) excluded. The remaining fifty-six (56) received further review with fourteen (14) selected studies achieving inclusion. The reviewed articles comprised six (6) types of studies and represented research from institutions in seven (7) different countries (Israel, United States, Haiti, Wales, Pakistan, China, and Iran). Thirteen (13) references were case reports/narrative reviews, policy statements, retrospective observational studies, narrative literature reviews, scoping reviews, and one systematic review. The majority of literature describing spinal cord injury was predominantly associated with earthquakes and blast-related disasters. There were no SI evidence-based clinical guidelines (EBG) in RSE. Information was obtained that could be used to formulate statements in a modified Delphi study to present to experts to obtain consensus SI EBG in RSE.
Many formerly glaciated valleys in the western United States preserve detailed glacial features that span the penultimate glaciation through the last deglaciation; however, numerical age control is limited in many of these systems. We report 35 new cosmogenic 10Be surface exposure ages of moraine boulders in the Sawatch Range, Colorado. Eight ages suggest Bull Lake moraines in Lake Creek (range: 132–120 ka, n = 4) and Clear Creek (range: 187–133 ka, n = 4) valleys may correlate with Marine Isotope Stage 6. In Lake Creek valley, 22 10Be ages from Pinedale end moraines average 20.6 ± 0.6 ka, and 5 10Be ages from a recessional moraine average 15.6 ± 0.7 ka, indicating that glaciers occupied two extended positions at ~21–20 and ~16 ka. The glacial extent dated to ~16 ka was nearly as great as that of the earlier glacial phase, suggesting that climate conditions in the Colorado Rocky Mountains at this time were similar to those of the last glacial maximum. Combining these moraine ages with seven previously published 10Be ages from cirque and valley-bottom bedrock reveals that the Lake Creek paleoglacier lost 82% of its full glacial length in ~1.5 ka and was completely deglaciated by ~14 ka.
Neuroimaging visualizes and quantifies age-related changes in brain structure, function, cerebral blood flow, and cerebral metabolic health. MRI studies show reductions in both overall and regional brain volumes, but to a lesser extent than in Alzheimer’s disease. Those aging non-pathologically tend to have relative preservation of mesial temporal and enthorhinal brain areas. White matter changes are also common as shown by hyperintensities on fluid attenuated inversion recovery and other T2 MRI images, presumably as a result of co-morbities that increasingly occur with age. Diffusion tensor imaging shows reductions in white matter integrity, including white matter fiber counts and overall white matter volume, beginning in mid- to late life. The neural response during both rest and task performance also shows reduced activation of core task-related networks but expansion to include other region activation. Reduced cerebral blood volume and flow also occur, likely reflecting alterations in hemodynamic function due to cerebrovascular and cardiovascular changes. Cerebral metabolic changes on MR spectroscopy occur with reduced concentrations of GABA and other neurotransmitters, as well as markers of neuronal integrity. Myoinositol, a marker of glial activation, may be elevated, indicating neuroinflammation, though this effect is likely not ubiquitous in successful aging.
The ice-cored Galena Creek Rock Glacier, Wyoming, USA, has been the subject of a number of studies that sought to determine the origin of its ice. We present new observations of the rock glacier's internal structure from ground-penetrating radar to constrain ice and debris distribution and accumulation. We imaged dipping reflectors in the center of the glacier that are weak and discontinuous, in contrast to strong reflectors toward the edge of the cirque beneath large debris-avalanche chutes. These reflectors form a network of concave-up, up-glacier dipping layers. We interpret these as englacial debris bands formed by large debris falls buried by subsequent ice and snow accumulation. They are discontinuous where ice outpaces debris accumulation, but with sufficient debris accumulation an interleaved pattern of ice and debris layers can form. We propose a model in which the ice in these interleaved layers is snowfall preserved by debris-facilitated accumulation. Large debris falls that occur in early spring bury sections of the snowpack, which are then preserved through summer and incorporated into the rock glacier body over time. This study highlights the importance of sequential accumulation of ice and debris for understanding the dynamics of rock glaciers and debris-covered glaciers.
The Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) cohort study of the Canadian Consortium on Neurodegeneration in Aging (CCNA) is a national initiative to catalyze research on dementia, set up to support the research agendas of CCNA teams. This cross-country longitudinal cohort of 2310 deeply phenotyped subjects with various forms of dementia and mild memory loss or concerns, along with cognitively intact elderly subjects, will test hypotheses generated by these teams.
Methods:
The COMPASS-ND protocol, initial grant proposal for funding, fifth semi-annual CCNA Progress Report submitted to the Canadian Institutes of Health Research December 2017, and other documents supplemented by modifications made and lessons learned after implementation were used by the authors to create the description of the study provided here.
Results:
The CCNA COMPASS-ND cohort includes participants from across Canada with various cognitive conditions associated with or at risk of neurodegenerative diseases. They will undergo a wide range of experimental, clinical, imaging, and genetic investigation to specifically address the causes, diagnosis, treatment, and prevention of these conditions in the aging population. Data derived from clinical and cognitive assessments, biospecimens, brain imaging, genetics, and brain donations will be used to test hypotheses generated by CCNA research teams and other Canadian researchers. The study is the most comprehensive and ambitious Canadian study of dementia. Initial data posting occurred in 2018, with the full cohort to be accrued by 2020.
Conclusion:
Availability of data from the COMPASS-ND study will provide a major stimulus for dementia research in Canada in the coming years.
Bipolar disorder (BD) and obsessive compulsive disorder (OCD) are prevalent, comorbid, and disabling conditions, often characterized by early onset and chronic course. When comorbid, OCD and BD can determine a more pernicious course of illness, posing therapeutic challenges for clinicians. Available reports on prevalence and clinical characteristics of comorbidity between BD and OCD showed mixed results, likely depending on the primary diagnosis of analyzed samples.
Methods.
We assessed prevalence and clinical characteristics of BD comorbidity in a large international sample of patients with primary OCD (n = 401), through the International College of Obsessive–Compulsive Spectrum Disorders (ICOCS) snapshot database, by comparing OCD subjects with vs without BD comorbidity.
Results.
Among primary OCD patients, 6.2% showed comorbidity with BD. OCD patients with vs without BD comorbidity more frequently had a previous hospitalization (p < 0.001) and current augmentation therapies (p < 0.001). They also showed greater severity of OCD (p < 0.001), as measured by the Yale–Brown Obsessive Compulsive Scale (Y-BOCS).
Conclusion.
These findings from a large international sample indicate that approximately 1 out of 16 patients with primary OCD may additionally have BD comorbidity along with other specific clinical characteristics, including more frequent previous hospitalizations, more complex therapeutic regimens, and a greater severity of OCD. Prospective international studies are needed to confirm our findings.
The relative velocity and extra pressure drop of a single vesicle flowing through a square microchannel are quantified via boundary element simulations, lubrication theory and microfluidic experiments. The vesicle is modelled as a fluid sac enclosed by an inextensible, fluidic membrane with a negligible bending stiffness. All results are parametrized in terms of the vesicle sphericity (i.e. the reduced volume) and flow confinement (i.e. the ratio of the vesicle radius to the channel hydraulic radius). Direct comparison is made to previous studies of vesicle flow through circular tubes, revealing several distinct features of the square-channel geometry. Firstly, fluid in the suspending medium bypasses the vesicle through the corners of the channel, which in turn reduces the dissipation created by the vesicle. Secondly, the absence of rotational symmetry about the channel axis permits surface circulation in the membrane (tank treading), which in turn reduces the vesicle’s speed. At very high confinement, both theory and experiment indicate that the vesicle’s speed can be reduced below the mean speed of the suspending fluid through this mechanism. Finally, the contact area for lubrication is greatly reduced in the square-duct geometry, which in turn weakens the stress singularity predicted by lubrication theory. This fact directly leads to a breakdown of the lubrication approximation at low flow confinement, as verified by comparison to boundary element simulations. Since the only distinct property assumed of the membrane is its ability to preserve surface area locally, it is expected that the results of this study are applicable to other types of soft particles with immobilized surfaces (e.g. Pickering droplets, gel beads and biological cells).
The Turkana Basin of northwestern Kenya is well known for its rich Neogene–Quaternary vertebrate fossil record; however, it also represents one of the few locations in sub-Saharan Africa where Cretaceous vertebrate fossils, including dinosaurs and other archosaurs, are preserved. These Cretaceous deposits are colloquially referred to as the ‘Turkana Grits’, and assumed to be Cretaceous in age based on their limited biostratigraphy. The ‘Turkana Grits’ are overlain by Palaeogene volcanic rocks (<35 Ma), which are widely considered to record the earliest evidence of plume-related volcanism in the East African Rift System. In this study, we present the results of an integrated sedimentary provenance investigation of two units within the ‘Turkana Grits’ called the Lapur and Muruanachok sandstones. Analysis of U–Pb ages and Lu–Hf initial ɛHf(t) values from 1106 detrital zircons demonstrate that sediments are primarily derived from Neoarchaean and Neoproterozoic basement sources, except for six Palaeogene grains from the upper Lapur Sandstone, which are of unknown provenance. Considered together, these data point to the Mozambique Belt, which makes up the nearby rift flanks, as the primary provenance source. This is consistent with palaeocurrent data, and suggests localized sediment input by alluvial fans, which fed into NNW-directed fluvial systems. Perhaps the most surprising finding is the identification of the late Paleocene detrital zircons, which not only demonstrate that the depositional age for the top of the formation is Paleocene rather than Cretaceous, but also provides possible evidence for the oldest Palaeogene volcanic activity within the East African Rift System.
The inertialess motion of lipid-bilayer vesicles flowing through a circular tube is investigated via direct numerical simulation and lubrication theory. A fully three-dimensional boundary integral equation method, previously used to study unbounded and wall-bounded Stokes flows around freely suspended vesicles, is extended to study the hindered mobility of vesicles through conduits of arbitrary cross-section. This study focuses on the motion of a periodic train of vesicles positioned concentrically inside a circular tube, with particular attention given to the effects of tube confinement, vesicle deformation and membrane bending elasticity. When the tube diameter is comparable to the transverse dimension of the vesicle, axisymmetric lubrication theory provides an approximate solution to the full Stokes-flow problem. By combining the present numerical results with a previously reported asymptotic theory (Barakat & Shaqfeh, J. Fluid Mech., vol. 835, 2018, pp. 721–761), useful correlations are developed for the vesicle velocity
$U$
and extra pressure drop
$\unicode[STIX]{x0394}p^{+}$
. When bending elasticity is relatively weak, these correlations are solely functions of the geometry of the system (independent of the imposed flow rate). The prediction of Barakat & Shaqfeh (2018) supplies the correct limiting behaviour of
$U$
and
$\unicode[STIX]{x0394}p^{+}$
near maximal confinement, whereas the present study extends this result to all regimes of confinement. Vesicle–vesicle interactions, shape transitions induced by symmetry breaking, and unsteadiness introduce quantitative changes to
$U$
and
$\unicode[STIX]{x0394}p^{+}$
. By contrast, membrane bending elasticity can qualitatively affect the hydrodynamics at sufficiently low flow rates. The dependence of
$U$
and
$\unicode[STIX]{x0394}p^{+}$
on the membrane bending stiffness (relative to a characteristic viscous stress scale) is found to be rather complex. In particular, the competition between viscous forces and bending forces can hinder or enhance the vesicle’s mobility, depending on the geometry and flow conditions.
OBJECTIVES/SPECIFIC AIMS: The objective of this study is to determine the degree to which the use of a contralesionally-controlled brain-computer interface for stroke rehabilitation drives change in interhemispheric motor cortical activity. METHODS/STUDY POPULATION: Ten chronic stroke patients were trained in the use of a brain-computer interface device for stroke recovery. Patients perform motor imagery to control the opening and closing of a motorized hand orthosis. This device was sent home with patients for 12 weeks, and patients were asked to use the device 1 hour per day, 5 days per week. The Action Research Arm Test (ARAT) was performed at 2-week intervals to assess motor function improvement. Before the active motor imagery task, patients were asked to quietly rest for 90 seconds before the task to calibrate recording equipment. EEG signals were acquired from 2 electrodes—one each centered over left and right primary motor cortex. Signals were preprocessed with a 60 Hz notch filter for environmental noise and referenced to the common average. Power envelopes for 1 Hz frequency bands (1–30 Hz) were calculated through Gabor wavelet convolution. Correlations between electrodes were then calculated for each frequency envelope on the first and last 5 runs, thus generating one correlation value per subject, per run. The chosen runs approximately correspond to the first and last week of device usage. These correlations were Fisher Z-transformed for comparison. The first and last 5 run correlations were averaged separately to estimate baseline and final correlation values. A difference was then calculated between these averages to determine correlation change for each frequency. The relationship between beta-band correlation changes (13–30 Hz) and the change in ARAT score was determined by calculating a Pearson correlation. RESULTS/ANTICIPATED RESULTS: Beta-band inter-electrode correlations tended to decrease more in patients achieving greater motor recovery (Pearson’s r=−0.68, p=0.031). A similar but less dramatic effect was observed with alpha-band (8–12 Hz) correlation changes (Pearson’s r=−0.42, p=0.22). DISCUSSION/SIGNIFICANCE OF IMPACT: The negative correlation between inter-electrode power envelope correlations in the beta frequency band and motor recovery indicates that activity in the motor cortex on each hemisphere may become more independent during recovery. The role of the unaffected hemisphere in stroke recovery is currently under debate; there is conflicting evidence regarding whether it supports or inhibits the lesioned hemisphere. These findings may support the notion of interhemispheric inhibition, as we observe less in common between activity in the 2 hemispheres in patients successfully achieving recovery. Future neuroimaging studies with greater spatial resolution than available with EEG will shed further light on changes in interhemispheric communication that occur during stroke rehabilitation.
Dissecting Bioethics, edited by Tuija Takala and Matti Hayry, welcomes contributions on the conceptual and theoretical dimensions of bioethics. The department is dedicated to the idea that words defined by bioethicists and others should not be allowed to imprison people’s actual concerns, emotions, and thoughts. Papers that expose the many meanings of a concept, describe the different readings of a moral doctrine, or provide an alternative angle to seemingly self-evident issues are particularly appreciated. To submit a paper or to discuss a suitable topic, contact Tuija Takala at tuija.takala@helsinki.fi.
A singular perturbation theory is developed for the steady, inertialess motion of a lipid-bilayer vesicle flowing through a narrow tube. The vesicle is treated as a sac of fluid enclosed by an inextensible membrane that admits a bending stiffness. Matched asymptotic expansions are developed in terms of a clearance parameter
$\unicode[STIX]{x1D716}\ll 1$
in order to calculate the flow field and vesicle shape. Mild restrictions are applied to the ratio of viscosities
$\unicode[STIX]{x1D705}$
and the ratio of bending stresses to viscous stresses
$\unicode[STIX]{x1D6FD}$
; in particular, the theory holds for
$\unicode[STIX]{x1D705}=o(\unicode[STIX]{x1D716}^{-1/2})$
and
$\unicode[STIX]{x1D6FD}=O(\unicode[STIX]{x1D716}^{-1})$
. The ratio of the vesicle length to the tube radius
$\ell$
is included as a parameter and asymptotic solutions in the limit of negligible bending stiffness are developed for long, cylindrical vesicles and short, spherical vesicles. The main result of the theory is a prediction for the vesicle speed and extra pressure drop due to the presence of the vesicle in the tube. The effects of confinement, vesicle length, and membrane bending elasticity are examined. The theoretical predictions show good agreement with experimental measurements reported for vesicles and red blood cells in highly confined channel flow. Previously reported models for red blood cells (Secomb et al., J. Fluid Mech., vol. 163, 1986, pp. 405–423; Halpern & Secomb, J. Fluid Mech., vol. 203, 1989, pp. 381–400) are clarified and extended in light of the new theory.
Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster.
Methods
We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties.
Results
The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature.
Conclusions
The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. (Disaster Med Public Health Preparedness. 2018;12:127–137)