We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Child maltreatment (CM) and migrant status are independently associated with psychosis. We examined prevalence of CM by migrant status and tested whether migrant status moderated the association between CM and first-episode psychosis (FEP). We further explored whether differences in CM exposure contributed to variations in the incidence rates of FEP by migrant status.
Methods
We included FEP patients aged 18–64 years in 14 European sites and recruited controls representative of the local populations. Migrant status was operationalized according to generation (first/further) and region of origin (Western/non-Western countries). The reference population was composed by individuals of host country's ethnicity. CM was assessed with Childhood Trauma Questionnaire. Prevalence ratios of CM were estimated using Poisson regression. We examined the moderation effect of migrant status on the odds of FEP by CM fitting adjusted logistic regressions with interaction terms. Finally, we calculated the population attributable fractions (PAFs) for CM by migrant status.
Results
We examined 849 FEP cases and 1142 controls. CM prevalence was higher among migrants, their descendants and migrants of non-Western heritage. Migrant status, classified by generation (likelihood test ratio:χ2 = 11.3, p = 0.004) or by region of origin (likelihood test ratio:χ2 = 11.4, p = 0.003), attenuated the association between CM and FEP. PAFs for CM were higher among all migrant groups compared with the reference populations.
Conclusions
The higher exposure to CM, despite a smaller effect on the odds of FEP, accounted for a greater proportion of incident FEP cases among migrants. Policies aimed at reducing CM should consider the increased vulnerability of specific subpopulations.
Psychosis rates are higher among some migrant groups. We hypothesized that psychosis in migrants is associated with cumulative social disadvantage during different phases of migration.
Methods
We used data from the EUropean Network of National Schizophrenia Networks studying Gene-Environment Interactions (EU-GEI) case–control study. We defined a set of three indicators of social disadvantage for each phase: pre-migration, migration and post-migration. We examined whether social disadvantage in the pre- and post-migration phases, migration adversities, and mismatch between achievements and expectations differed between first-generation migrants with first-episode psychosis and healthy first-generation migrants, and tested whether this accounted for differences in odds of psychosis in multivariable logistic regression models.
Results
In total, 249 cases and 219 controls were assessed. Pre-migration (OR 1.61, 95% CI 1.06–2.44, p = 0.027) and post-migration social disadvantages (OR 1.89, 95% CI 1.02–3.51, p = 0.044), along with expectations/achievements mismatch (OR 1.14, 95% CI 1.03–1.26, p = 0.014) were all significantly associated with psychosis. Migration adversities (OR 1.18, 95% CI 0.672–2.06, p = 0.568) were not significantly related to the outcome. Finally, we found a dose–response effect between the number of adversities across all phases and odds of psychosis (⩾6: OR 14.09, 95% CI 2.06–96.47, p = 0.007).
Conclusions
The cumulative effect of social disadvantages before, during and after migration was associated with increased odds of psychosis in migrants, independently of ethnicity or length of stay in the country of arrival. Public health initiatives that address the social disadvantages that many migrants face during the whole migration process and post-migration psychological support may reduce the excess of psychosis in migrants.
In Europe, the incidence of psychotic disorder is high in certain migrant and minority ethnic groups (hence: ‘minorities’). However, it is unknown how the incidence pattern for these groups varies within this continent. Our objective was to compare, across sites in France, Italy, Spain, the UK and the Netherlands, the incidence rates for minorities and the incidence rate ratios (IRRs, minorities v. the local reference population).
Methods
The European Network of National Schizophrenia Networks Studying Gene–Environment Interactions (EU-GEI) study was conducted between 2010 and 2015. We analyzed data on incident cases of non-organic psychosis (International Classification of Diseases, 10th edition, codes F20–F33) from 13 sites.
Results
The standardized incidence rates for minorities, combined into one category, varied from 12.2 in Valencia to 82.5 per 100 000 in Paris. These rates were generally high at sites with high rates for the reference population, and low at sites with low rates for the reference population. IRRs for minorities (combined into one category) varied from 0.70 (95% CI 0.32–1.53) in Valencia to 2.47 (95% CI 1.66–3.69) in Paris (test for interaction: p = 0.031). At most sites, IRRs were higher for persons from non-Western countries than for those from Western countries, with the highest IRRs for individuals from sub-Saharan Africa (adjusted IRR = 3.23, 95% CI 2.66–3.93).
Conclusions
Incidence rates vary by region of origin, region of destination and their combination. This suggests that they are strongly influenced by the social context.
Ethnic minority groups in Western countries face an increased risk of psychotic disorders. Causes of this long-standing public health inequality remain poorly understood. We investigated whether social disadvantage, linguistic distance and discrimination contributed to these patterns.
Methods
We used case–control data from the EUropean network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) study, carried out in 16 centres in six countries. We recruited 1130 cases and 1497 population-based controls. Our main outcome measure was first-episode ICD-10 psychotic disorder (F20–F33), and exposures were ethnicity (white majority, black, mixed, Asian, North-African, white minority and other), generational status, social disadvantage, linguistic distance and discrimination. Age, sex, paternal age, cannabis use, childhood trauma and parental history of psychosis were included as a priori confounders. Exposures and confounders were added sequentially to multivariable logistic models, following multiple imputation for missing data.
Results
Participants from any ethnic minority background had crude excess odds of psychosis [odds ratio (OR) 2.03, 95% confidence interval (CI) 1.69–2.43], which remained after adjustment for confounders (OR 1.61, 95% CI 1.31–1.98). This was progressively attenuated following further adjustment for social disadvantage (OR 1.52, 95% CI 1.22–1.89) and linguistic distance (OR 1.22, 95% CI 0.95–1.57), a pattern mirrored in several specific ethnic groups. Linguistic distance and social disadvantage had stronger effects for first- and later-generation groups, respectively.
Conclusion
Social disadvantage and linguistic distance, two potential markers of sociocultural exclusion, were associated with increased odds of psychotic disorder, and adjusting for these led to equivocal risk between several ethnic minority groups and the white majority.
The aims of this meta-analysis are (i) to estimate the pooled relative risk (RR) of developing non-affective psychotic disorder (NAPD) and affective psychotic disorder (APD) among migrants and their children; (ii) to adjust these results for socioeconomic status (SES); (iii) to examine the sources of heterogeneity that underlie the risk of NAPD.
Methods
We included population-based incidence studies that reported an age-adjusted RR with 95% confidence interval (CI) published 1 January 1977–12 October 2017 and used a random-effects model.
Results
We retrieved studies performed in Europe (n = 43), Israel (n = 3), Canada (n = 2) and Australia (n = 1). The meta-analysis yielded a RR, adjusted for age and sex, of 2.13 (95% CI 1.99–2.27) for NAPD and 2.94 (95% CI 2.28–3.79) for APD. The RRs diminished, but persisted after adjustment for SES. With reference to NAPD: a personal or parental history of migration to Europe from countries outside Europe was associated with a higher RR (RR = 2.94, 95% CI 2.63–3.29) than migration within Europe (RR = 1.88, 95% 1.62–2.18). The corresponding RR was lower in Israel (RR = 1.22; 0.99–1.50) and Canada (RR = 1.21; 0.85–1.74). The RR was highest among individuals with a black skin colour (RR = 4.19, 95% CI 3.42–5.14). The evidence of a difference in risk between first and second generation was insufficient.
Conclusions
Positive selection may explain the low risk in Canada, while the change from exclusion to inclusion may do the same in Israel. Given the high risks among migrants from developing countries in Europe, social exclusion may have a pathogenic role.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.