We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a metric condition $\TTMetric$ which describes the geometry of classical small cancellation groups and applies also to other known classes of groups such as two-dimensional Artin groups. We prove that presentations satisfying condition $\TTMetric$ are diagrammatically reducible in the sense of Sieradski and Gersten. In particular, we deduce that the standard presentation of an Artin group is aspherical if and only if it is diagrammatically reducible. We show that, under some extra hypotheses, $\TTMetric$-groups have quadratic Dehn functions and solvable conjugacy problem. In the spirit of Greendlinger's lemma, we prove that if a presentation P = 〈X| R〉 of group G satisfies conditions $\TTMetric -C'(\frac {1}{2})$, the length of any nontrivial word in the free group generated by X representing the trivial element in G is at least that of the shortest relator. We also introduce a strict metric condition $\TTMetricStrict$, which implies hyperbolicity.
The simplicial complexity is an invariant for finitely presentable groups which was recently introduced by Babenko, Balacheff, and Bulteau to study systolic area. The simplicial complexity κ(G) was proved to be a good approximation of the systolic area σ(G) for large values of κ(G). In this paper we compute the simplicial complexity of all surface groups (both in the orientable and in the non-orientable case). This partially settles a problem raised by Babenko, Balacheff, and Bulteau. We also prove that κ(G * ℤ) = κ(G) for any surface group G. This provides the first partial evidence in favor of the conjecture of the stability of the simplicial complexity under free product with free groups. The general stability problem, both for simplicial complexity and for systolic area, remains open.
We present a new test for studying asphericity and diagrammatic reducibility of group presentations. Our test can be applied to prove diagrammatic reducibility in cases where the classical weight test fails. We use this criterion to generalize results of J. Howie and S.M. Gersten on asphericity of LOTs and of Adian presentations, and derive new results on solvability of equations over groups. We also use our methods to investigate a conjecture of S.V. Ivanov related to Kaplansky's problem on zero divisors: we strengthen Ivanov's result for locally indicable groups and prove a weak version of the conjecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.