We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in
$\mathbb {P}^n$
and
$\mathbb {P}^n/G$
, where G is a finite group that acts on
$\mathbb {P}^n$
and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian
$\operatorname {{\mathrm {Gr}}}(n,r)$
and preserves an appropriate Calabi–Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi–Yau hypersurfaces inside
$\operatorname {{\mathrm {Gr}}}(n,r)$
and
$\operatorname {{\mathrm {Gr}}}(n,r)/G$
. This allows us to describe a compactification of the Eguchi–Hori–Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.
We show that there is an extra grading in the mirror duality discovered in the early nineties by Greene–Plesser and Berglund–Hübsch. Their duality matches cohomology classes of two Calabi–Yau orbifolds. When both orbifolds are equipped with an automorphism s of the same order, our mirror duality involves the weight of the action of $s^*$ on cohomology. In particular it matches the respective s-fixed loci, which are not Calabi–Yau in general. When applied to K3 surfaces with nonsymplectic automorphism s of odd prime order, this provides a proof that Berglund–Hübsch mirror symmetry implies K3 lattice mirror symmetry replacing earlier case-by-case treatments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.