We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Aripiprazole has demonstrated efficacy for the treatment of paediatric patients (10–17 years) with a manic or mixed episode associated with bipolar I disorder in a clinical trial that utilised the Young Mania Rating Scale (YMRS) Total score as the primary outcome measure.
Objectives/aim
This analysis evaluated the profile of discrete symptom response using the YMRS and other measures.
Methods
Post-hoc analysis of individual items of the YMRS and the parent or subject version of the General Behaviour Inventory (GBI) Mania and Depression scales using data from a 4-week, double-blind, randomised trial that compared aripiprazole (10 or 30 mg/day, n = 197) with placebo (n = 99).
Results
In total, 296 patients were randomised; 80% completed the study. Significant decreases at Week 4 (p < 0.05) were seen in eight YMRS items: elevated mood, increased motor activity/energy, need for sleep, irritability, speech (rate and amount), language/thought disorder, abnormal thought content and disruptive/aggressive behaviour. For the GBI, effect sizes for parent-reported mania items were medium to large (for example, 0.41 for ‘depressed but high energy’ to 0.78 for ‘rage combined with unusually happy’) but were consistently small on subject self-reported items of mania and depression and, for the overall scale, had the poorest agreement with clinician ratings.
Conclusions
Aripiprazole demonstrated improvements in some of the more troublesome symptoms of paediatric patients with bipolar I disorder experiencing an acute manic or mixed episode. Of note, irritability and aggression showed large treatment effects on both clinician and parent-reported measures, but less so for subject-reported measures.
To investigate the association between parity and the risk of incident dementia in women.
Methods
We pooled baseline and follow-up data for community-dwelling women aged 60 or older from six population-based, prospective cohort studies from four European and two Asian countries. We investigated the association between parity and incident dementia using Cox proportional hazards regression models adjusted for age, educational level, hypertension, diabetes mellitus and cohort, with additional analysis by dementia subtype (Alzheimer dementia (AD) and non-Alzheimer dementia (NAD)).
Results
Of 9756 women dementia-free at baseline, 7010 completed one or more follow-up assessments. The mean follow-up duration was 5.4 ± 3.1 years and dementia developed in 550 participants. The number of parities was associated with the risk of incident dementia (hazard ratio (HR) = 1.07, 95% confidence interval (CI) = 1.02–1.13). Grand multiparity (five or more parities) increased the risk of dementia by 30% compared to 1–4 parities (HR = 1.30, 95% CI = 1.02–1.67). The risk of NAD increased by 12% for every parity (HR = 1.12, 95% CI = 1.02–1.23) and by 60% for grand multiparity (HR = 1.60, 95% CI = 1.00–2.55), but the risk of AD was not significantly associated with parity.
Conclusions
Grand multiparity is a significant risk factor for dementia in women. This may have particularly important implications for women in low and middle-income countries where the fertility rate and prevalence of grand multiparity are high.
About 30,000 astronomical photographic plates were digitised between 2012–2017 with a special digitising machine that has high precision in both astrometry and photometry. All the images from the plates, together with plate information and measured coordinates of all the objects on the plates, have been stored in the Chinese Virtual Observatory.
With so many spectroscopic surveys, both past and upcoming, such as SDSS and LAMOST, the number of accessible stellar spectra is continuously increasing. There is therefore a great need for automated procedures that will derive estimates of stellar parameters. Working with spectra from SDSS and LAMOST, we put forward a hybrid approach of Kernel Principal Component Analysis (KPCA) and Support Vector Machine (SVM) to determine the stellar atmospheric parameters effective temperature, surface gravity and metallicity. For stars with both APOGEE and LAMOST spectra, we adopt the LAMOST spectra and APOGEE parameters, and then use KPCA to reduce dimensionality and SVM to measure parameters. Our method provides reliable and precise results; for example, the standard deviation of effective temperature, surface gravity and metallicity for the test sample come to approximately 47–75 K, 0.11–0.15 dex and 0.06–0.075 dex, respectively. The impact of the signal:noise ratio of the observations upon the accuracy of the results is also investigated.
Insufficient nutrition during the perinatal period causes structural alterations in humans and experimental animals, leading to increased vulnerability to diseases in later life. Japanese quail, Coturnix japonica, in which partial (8–10%) egg white was withdrawn (EwW) from eggs before incubation had lower birth weights than controls (CTs). EwW birds also had reduced hatching rates, smaller glomeruli and lower embryo weight. In EwW embryos, the surface condensate area containing mesenchymal cells was larger, suggesting that delayed but active nephrogenesis takes place. In mature EwW quail, the number of glomeruli in the cortical region (mm2) was significantly lower (CT 34.7±1.4, EwW 21.0±1.2); capillary loops showed focal ballooning, and mesangial areas were distinctly expanded. Immunoreactive cell junction proteins, N-cadherin and podocin, and slit diaphragms were clearly seen. With aging, the mesangial area and glomerular size continued to increase and were significantly larger in EwW quail, suggesting compensatory hypertrophy. Furthermore, apoptosis measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling analysis was higher in EwWs than in CTs on embryonic day 15 and postnatal day 4 (D4). Similarly, plasma glucocorticoid (corticosterone) was higher (P<0.01) on D4 in EwW quail. These results suggest that although nephrogenic activity is high in low-nutrition quail during the perinatal period, delayed development and increased apoptosis may result in a lower number of mature nephrons. Damaged or incompletely mature mesangium may trigger glomerular injury, leading in later life to nephrosclerosis. The present study shows that birds serve as a model for ‘fetal programming,’ which appears to have evolved phylogenetically early.
The loss of a close relative is one of the most stressful life events. In pregnancy, this experience has been associated with a higher risk of fetal death and under-five mortality, but little is known about potential effects on long-term mortality in offspring. We examined the association between prenatal maternal bereavement and mortality in a cohort of 5.3 million children followed until up to 37 years of age.
Method
The population-based cohort study included 5 253 508 live singleton births in Denmark (1973–2004) and Sweden (1973–2006). Children born to mothers who lost a child, spouse, sibling, or parent during or 1 year before pregnancy were categorized as exposed.
Results
Prenatal maternal bereavement was associated with a 10% increased all-cause mortality risk in offspring [mortality rate ratio (MRR) 1.10, 95% confidence interval (CI) 1.03–1.18]. The association was the most pronounced for children of mothers who lost a child/spouse (MRR 1.28, 95% CI 1.14–1.44) and was stronger during the first 10 years of life. Prenatal maternal bereavement may have stronger effects on natural causes of death in offspring, including infectious/parasitic disease (MRR 1.86, 95% CI 1.07–3.23), endocrine/nutritional/metabolic diseases (MRR 3.23, 95% CI 2.02–5.17), diseases of nervous system (MRR 3.36, 95% CI 2.47–4.58), and congenital malformations (MRR 1.39, 95% CI 1.08–1.80). No excess mortality risk in offspring was observed for unnatural causes of death.
Conclusion
Prenatal maternal bereavement was associated with an increased long-term mortality risk in offspring, particularly for selected natural causes of diseases and medical conditions. Our results support the fetal programming hypothesis that prenatal stress may contribute to ill health from physical diseases later in life.
At the end of 2013, China reported a countrywide outbreak of measles. From January to May 2014, we investigated the clinical and immunological features of the cases of the outbreak admitted to our hospital. In this study, all 112 inpatients with clinically diagnosed measles were recruited from the 302 Military Hospital of China. The virus was isolated from throat swabs from these patients, and cytokine profiles were examined. By detecting the measles virus of 30 of the 112 patients, we found that this measles outbreak was of the H1 genotype, which is the major strain in China. The rates of complications, specifically pneumonia and liver injury, differed significantly in patients aged <8 months, 8 months to 18 years, and >18 years: pneumonia was more common in children, while liver injury was more common in adults. Pneumonia was a significant independent risk factor affecting measles duration. Compared to healthy subjects, measles patients had fewer CD4+IL-17+, CD4+IFN-γ+, and CD8+IFN-γ+ cells in both the acute and recovery phases. In contrast, measles patients in the acute phase had more CD8+IL-22+ cells than those in recovery or healthy subjects. We recommend that future studies focus on the age-related distribution of pneumonia and liver injury as measles-related complications as well as the association between immunological markers and measles prognosis.
Major depressive disorder (MDD) is moderately heritable, however genome-wide association studies (GWAS) for MDD, as well as for related continuous outcomes, have not shown consistent results. Attempts to elucidate the genetic basis of MDD may be hindered by heterogeneity in diagnosis. The Center for Epidemiological Studies Depression (CES-D) scale provides a widely used tool for measuring depressive symptoms clustered in four different domains which can be combined together into a total score but also can be analysed as separate symptom domains.
Method
We performed a meta-analysis of GWAS of the CES-D symptom clusters. We recruited 12 cohorts with the 20- or 10-item CES-D scale (32 528 persons).
Results
One single nucleotide polymorphism (SNP), rs713224, located near the brain-expressed melatonin receptor (MTNR1A) gene, was associated with the somatic complaints domain of depression symptoms, with borderline genome-wide significance (pdiscovery = 3.82 × 10−8). The SNP was analysed in an additional five cohorts comprising the replication sample (6813 persons). However, the association was not consistent among the replication sample (pdiscovery+replication = 1.10 × 10−6) with evidence of heterogeneity.
Conclusions
Despite the effort to harmonize the phenotypes across cohorts and participants, our study is still underpowered to detect consistent association for depression, even by means of symptom classification. On the contrary, the SNP-based heritability and co-heritability estimation results suggest that a very minor part of the variation could be captured by GWAS, explaining the reason of sparse findings.
The unique properties of silicon oxide materials, no matter intrinsic or doped, utilized in thin film solar cells (TFSCs) in the area of photovoltaic (PV) are making TFSCs one of the most attractive photovoltaic technologies for the development of high-performing electricity production units to be integrated in everyday life. In comparison to other silicon materials, the particular diphasic structure of silicon oxide materials, in which hydrogenated microcrystalline silicon (μc-Si:H) crystallites are surrounded by an oxygen-rich hydrogenated amorphous silicon (a-Si:H) phase, causes them present excellent photoelectrical material properties, such as a low-parasitic absorption in the broadband spectral range, independent controllability of longitudinal and lateral conductivity, refractive indices (3.5-2.0), band gap (2.0-2.6 eV) and conductivity tenability (with orders of 1-10-9 S/cm) with oxygen doping, and so on. Various types of silicon oxide materials, including intrinsic, p- or n- type, further applied in TFSCs have also played significant roles in improving the efficiency of various types of single-, dual-, and triple-junction thin-film solar cells from both the optical and electrical points of view. In this paper, we present our latest progress in studying the performance improvement role of intrinsic or doped silicon oxide materials in pin-type a-Si:H, a-SiGe:H, and μc-Si:H single-junction solar cells. By effectively tuning the band gap values of intrinsic a-SiOx:H materials with oxygen doping and adopting the layers with a suitable band gap (1.86 eV) as the P/I buffer layers of a-Si:H solar cells fabricated on metal organic chemical vapor deposition (MOCVD) boron-doped zinc oxide (ZnO:B) substrates, a significant Voc increases up to 909 mV and an excellent external quantum efficiency (EQE) response of 75% at the 400 nm typical wavelength can be achieved by matching the band gap discontinuity between the p-type nc-SiOx:H window and a-Si:H intrinsic layers. The serious leakage current characteristics of pin-type narrow-gap (Eg<1.5 eV) a-SiGe:H single-junction solar cells can also be finely tuned by integrating an n-type μc-SiOx:H layer with a small oxygen content in addition to improving the long-wavelength response, an effective approach gives rise to the highest FF of 70.62% for pin-type a-SiGe:H single-junction solar cells with an average band gap of 1.48 eV. In addition, our studies proved that the application of p-type μc-SiOx:H window layers in μc-Si:H single-junction solar cells can effectively improve the short-wavelength light coupling by suppressing the parasitic absorption and promoting the anti-reflectivity with a graded refractive index profile. On the basis of the optimum single-junction solar cells with omnipotent silicon oxide materials, an initial efficiency of 16.07% has been achieved for pin-type a-Si:H/a-SiGe:H/μc-Si:H triple-junction solar cells with an active area of 0.25 cm2. The omnipotent properties of silicon oxide layers in TFSCs, including effective optical coupling and trapping, suitability in compensating for the band gap discontinuity, the shunt-quenching capacity, and so on, make them likely to be extended to other types of solar cells such as polycrystalline chalcopyrite Cu(In,Ga)Se2 (CIGS) and perovskite-sensitized solar cells, opening up new opportunities for acquiring solar cells with higher performance.
With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterizing their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high-resolution and high signal-to-noise ratio (SNR) transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2 · O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. Due to the high resolution and high SNR of our spectrum, several novel details of the Earth atmosphere's transmission spectrum are presented. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water vapour in Earth-like exoplanet atmospheres.
We made dynamical black hole mass measurements from nineteen Seyfert 2 galaxies which host sub-parsec H2O maser disks using the H2O megamaser technique. The nearly perfect Keplerian rotation curves in many of these maser systems guarantee the high accuracy and precision of the black hole mass measurements. With the stellar velocity dispersion (σ∗) of the galaxy bulges measured with the Dupont 2.5 m telescope at Las Campanas Observatory in the South and the Apache Point Observatory (APO) 3.5m telescope in the North, we found that H2O maser galaxies, most of which host pseudo bulges rather than classical bulges, do not all follow the MBH–σ∗ relation shown in the literature. This result is well consistent with the latest findings by Kormendy & Ho (2013) that only early type galaxies and galaxies with classical bulges follow a tight MBH–σ∗ relation. Such a tight correlation may not exist in pseudo bulge galaxies.
AFM induced local anodic oxidation of HOPG was carried out in various conditions such as humidity, applied voltage and scan speed. A clear evidence of different oxidation features between HOPG and graphene has been confirmed and discussed.
These results should contribute to the progress of the micro/nano fabrication of graphene by the local anodic oxidation.
The correlation of stress in Silicon Carbide (SiC) crystal and frequency shift in micro- Raman spectroscopy was determined by an experimental method. We applied uniaxial stress to 4H- and 6H-SiC single crystal square bar specimen shaped with (0001) and (11-20) faces by four point bending test, under measuring the frequency shift in micro-Raman spectroscopy. The results revealed that the linearity coefficients between stress and Raman shift were -1.96 cm-1/GPa for FTO(2/4)E2 on 4H-SiC (0001) face, -2.08 cm-1/GPa for FTO(2/4)E2 on 4H-SiC (11-20) face and -2.70 cm-1/GPa for FTO(2/6)E2 on 6H-SiC (0001) face. Determination of these coefficients has made it possible to evaluate the residual stress in SiC crystal quantitatively by micro-Raman spectroscopy. We evaluated the residual stress in SiC substrate that was grown in our laboratory by utilizing the results obtained in this study. The result of estimation indicated that the SiC substrate with a diameter of 6 inch remained residual stress as low as ±15 MPa.
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
EMU is a wide-field radio continuum survey planned for the new Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The primary goal of EMU is to make a deep (rms ∼ 10 μJy/beam) radio continuum survey of the entire Southern sky at 1.3 GHz, extending as far North as +30° declination, with a resolution of 10 arcsec. EMU is expected to detect and catalogue about 70 million galaxies, including typical star-forming galaxies up to z ∼ 1, powerful starbursts to even greater redshifts, and active galactic nuclei to the edge of the visible Universe. It will undoubtedly discover new classes of object. This paper defines the science goals and parameters of the survey, and describes the development of techniques necessary to maximise the science return from EMU.
Guided by simulations using SIMION 8.1, a series of modifications were made to an experimental version of an Isobar Separator for Anions (ISA). The resulting improved version of the ISA provides a means of re-energizing the ions after they are cooled by gas collisions as they pass through the gas-filled radiofrequency quadrupoles (RFQ), and also provides higher transmission efficiencies. Reinvestigation of the separation of CaF3− and KF3− with this refined apparatus resulted in a better balance between isobar suppression and analyte transmission. KF3− was attenuated at eV energies by 4 orders of magnitude while 40% transmission of CaF3− was retained, for a 20keV CaF3− beam of Φ2mm and ±12mr. These results advance the possibility of an efficient small ISA-AMS system for both cosmogenic and medical applications of 41Ca.