We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Mass casualty triage is the process of prioritizing multiple victims when resources are not sufficient to treat everyone immediately. No national guideline for mass casualty triage exists in the United States. The lack of a national guideline has resulted in variability in triage processes, tags, and nomenclature. This variability has the potential to inject confusion and miscommunication into the disaster incident, particularly when multiple jurisdictions are involved. The Model Uniform Core Criteria for Mass Casualty Triage were developed to be a national guideline for mass casualty triage to ensure interoperability and standardization when responding to a mass casualty incident. The Core Criteria consist of 4 categories: general considerations, global sorting, lifesaving interventions, and individual assessment of triage category. The criteria within each of these categories were developed by a workgroup of experts representing national stakeholder organizations who used the best available science and, when necessary, consensus opinion. This article describes how the Model Uniform Core Criteria for Mass Casualty Triage were developed.
(Disaster Med Public Health Preparedness. 2011;5:129-137)
Leafy spurge can be detected during flowering with either aerial photography or hyperspectral remote sensing because of the distinctive yellow-green color of the flower bracts. The spectral characteristics of flower bracts and leaves were compared with pigment concentrations to determine the physiological basis of the remote sensing signature. Compared with leaves of leafy spurge, flower bracts had lower reflectance at blue wavelengths (400 to 500 nm), greater reflectance at green, yellow, and orange wavelengths (525 to 650 nm), and approximately equal reflectances at 680 nm (red) and at near-infrared wavelengths (725 to 850 nm). Pigments from leaves and flower bracts were extracted in dimethyl sulfoxide, and the pigment concentrations were determined spectrophotometrically. Carotenoid pigments were identified using high-performance liquid chromatography. Flower bracts had 84% less chlorophyll a, 82% less chlorophyll b, and 44% less total carotenoids than leaves, thus absorptance by the flower bracts should be less and the reflectance should be greater at blue and red wavelengths. The carotenoid to chlorophyll ratio of the flower bracts was approximately 1:1, explaining the hue of the flower bracts but not the value of reflectance. The primary carotenoids were lutein, β-carotene, and β-cryptoxanthin in a 3.7:1.5:1 ratio for flower bracts and in a 4.8:1.3:1 ratio for leaves, respectively. There was 10.2 μg g−1 fresh weight of colorless phytofluene present in the flower bracts and none in the leaves. The fluorescence spectrum indicated high blue, red, and far-red emission for leaves compared with flower bracts. Fluorescent emissions from leaves may contribute to the higher apparent leaf reflectance in the blue and red wavelength regions. The spectral characteristics of leafy spurge are important for constructing a well-documented spectral library that could be used with hyperspectral remote sensing.
The characteristics of GaAs layers grown by MBE at growth temperatures from 200 °C to 400 °C have been evaluated by photoconductivity experiments in order to understand the photoelectronic properties of this material. Low temperature (LT) growth of GaAs on both silicon and GaAs substrates has been investigated in an attempt to better understand the nature of defects which are created in epitaxial layers grown under these conditions. Results from experiments on both annealed and unannealed LT samples indicate that the electronic transport properties of the epilayers can be controlled by selecting the appropriate growth conditions.
Email your librarian or administrator to recommend adding this to your organisation's collection.