We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Surgical site infection (SSI) prevention requires multiple interventions packaged into “bundles.” The implementation of all bundle elements is key to the bundle’s efficacy. A human-factors engineering approach can be used to identify key barriers and facilitators to implementing elements and develop recommendations for bundle implementation within the clinical work system.
Brain imaging studies have shown altered amygdala activity during emotion processing in children and adolescents with oppositional defiant disorder (ODD) and conduct disorder (CD) compared to typically developing children and adolescents (TD). Here we aimed to assess whether aggression-related subtypes (reactive and proactive aggression) and callous-unemotional (CU) traits predicted variation in amygdala activity and skin conductance (SC) response during emotion processing.
Methods
We included 177 participants (n = 108 cases with disruptive behaviour and/or ODD/CD and n = 69 TD), aged 8–18 years, across nine sites in Europe, as part of the EU Aggressotype and MATRICS projects. All participants performed an emotional face-matching functional magnetic resonance imaging task.
Results
Differences between cases and TD in affective processing, as well as specificity of activation patterns for aggression subtypes and CU traits, were assessed. Simultaneous SC recordings were acquired in a subsample (n = 63). Cases compared to TDs showed higher amygdala activity in response to negative faces (fearful and angry) v. shapes. Subtyping cases according to aggression-related subtypes did not significantly influence on amygdala activity; while stratification based on CU traits was more sensitive and revealed decreased amygdala activity in the high CU group. SC responses were significantly lower in cases and negatively correlated with CU traits, reactive and proactive aggression.
Conclusions
Our results showed differences in amygdala activity and SC responses to emotional faces between cases with ODD/CD and TD, while CU traits moderate both central (amygdala) and peripheral (SC) responses. Our insights regarding subtypes and trait-specific aggression could be used for improved diagnostics and personalized treatment.
Raw milk cheeses are commonly consumed in France and are also a common source of foodborne outbreaks (FBOs). Both an FBO surveillance system and a laboratory-based surveillance system aim to detect Salmonella outbreaks. In early August 2018, five familial FBOs due to Salmonella spp. were reported to a regional health authority. Investigation identified common exposure to a raw goats' milk cheese, from which Salmonella spp. were also isolated, leading to an international product recall. Three weeks later, on 22 August, a national increase in Salmonella Newport ST118 was detected through laboratory surveillance. Concomitantly isolates from the earlier familial clusters were confirmed as S. Newport ST118. Interviews with a selection of the laboratory-identified cases revealed exposure to the same cheese, including exposure to batches not included in the previous recall, leading to an expansion of the recall. The outbreak affected 153 cases, including six cases in Scotland. S. Newport was detected in the cheese and in the milk of one of the producer's goats. The difference in the two alerts generated by this outbreak highlight the timeliness of the FBO system and the precision of the laboratory-based surveillance system. It is also a reminder of the risks associated with raw milk cheeses.
Investigated in this paper is the stability of the gravity-driven flow of a liquid layer laden with soluble surfactant down a heated incline. A mathematical model incorporating variations in surface tension with surfactant concentration and temperature has been formulated. A linear stability analysis is carried out both asymptotically for small wavenumbers and numerically for arbitrary wavenumbers. An expression for the critical Reynolds number has been derived which accounts for thermocapillary and solutocapillary effects, and reduces to known documented results for special cases. Also, a nonlinear reduced model has been derived using weighted residuals, and solved numerically to simulate the instability of the equilibrium flow and the development of permanent surface waves that arise. The nonlinear simulations were found to be in good agreement with the linear stability analysis.
Procurement's important role in healthcare decision making has encouraged criticism and calls for greater collaboration with health technology assessment (HTA), and necessitates detailed analysis of how procurement approaches the decision task.
Methods
We reviewed tender documents that solicit medical technologies for patient care in Canada, focusing on request for proposal (RFP) tenders that assess quality and cost, supplemented by a census of all tender types. We extracted data to assess (i) use of group purchasing organizations (GPOs) as buyers, (ii) evaluation criteria and rubrics, and (iii) contract terms, as indicators of supplier type and market conditions.
Results
GPOs were dominant buyers for RFPs (54/97) and all tender types (120/226), and RFPs were the most common tender (92/226), with few price-only tenders (11/226). Evaluation criteria for quality were technical, including clinical or material specifications, as well as vendor experience and qualifications; “total cost” was frequently referenced (83/97), but inconsistently used. The most common (47/97) evaluative rubric was summed scores, or summed scores after excluding those below a mandatory minimum (22/97), with majority weight (64.1 percent, 62.9 percent) assigned to quality criteria. Where specified, expected contract lengths with successful suppliers were high (mean, 3.93 years; average renewal, 2.14 years), and most buyers (37/42) expected to award to a single supplier.
Conclusions
Procurement's evaluative approach is distinctive. While aiming to go beyond price in the acquisition of most medical technologies, it adopts a narrow approach to assessing quality and costs, but also attends to factors little considered by HTA, suggesting opportunities for mutual lesson learning.
Atomic mixing by replacement collision sequences and other cascade effects is well known to create chemical disorder in irradiated alloys. Most studies of irradiation-induced disordering have focused on ex situ analysis of irradiated samples; however, fast in situ techniques are necessary to measure disordering at elevated temperatures without significant interference from concurrent re-ordering processes. In the present work, we use in situ electron diffraction with high speed data collection to measure the initial change in the long-range order parameter S with ion dose ϕ during 500 keV Ne+ irradiation of Cu3Au foils. The data reveal an unexpected and dramatic increase in the disordering rate as the critical order–disorder transition temperature TC is approached. Molecular dynamics simulations show that this increase is not due to temperature-dependent cascade mixing. We attribute the enhanced disordering, instead, to coupling between point defect fluxes and the chemical state of order.
We offer the first sub-seasonal view of glacial age archives from the Siple Dome-A (SDMA) ice core using the ultra-high resolution capabilities of a newly developed laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS; 121 µm sampling resolution) system capable of conducting multi-element glaciochemical analysis. Our ultra-high resolution data demonstrates that: (1) the SDMA ice core record can be annually dated based on seasonality in chemical inputs at a depth not previously possible using previous glaciochemical sampling methods, (2) winter accumulation at the SD site was greater than summer accumulation during the three late glacial periods selected (~15.3, 17.3, 21.4 Ka ago) in this study and (3) resulting annual layer thicknesses results show greater variability than the current SD ice core depth/age model (Brook and others, 2005), possibly due to depositional effects such as wind scouring and/or decadal variability in snow accumulation that is not captured by the resolution of the current depth/age model.
Young children are slow to master conventional intonation patterns in their yes/no questions, which may stem from imperfect understanding of the links between terminal pitch contours and pragmatic intentions. In Experiment 1, five- to ten-year-old children and adults were required to judge utterances as questions or statements on the basis of intonation alone. Children eight years of age or younger performed above chance levels but less accurately than adult listeners. To ascertain whether the verbal content of utterances interfered with young children's attention to the relevant acoustic cues, low-pass filtered versions of the same utterances were presented to children and adults in Experiment 2. Low-pass filtering reduced performance comparably for all age groups, perhaps because such filtering reduced the salience of critical pitch cues. Young children's difficulty in differentiating declarative questions from statements is not attributable to basic perceptual difficulties but rather to absent or unstable intonation categories.
Studies on the role of diet in the development of chronic diseases often rely on self-report surveys of dietary intake. Unfortunately, many validity studies have demonstrated that self-reported dietary intake is subject to systematic under-reporting, although the vast majority of such studies have been conducted in industrialised countries. The aim of the present study was to investigate whether or not systematic reporting error exists among the individuals of African ancestry (n 324) in five countries distributed across the Human Development Index (HDI) scale, a UN statistic devised to rank countries on non-income factors plus economic indicators. Using two 24 h dietary recalls to assess energy intake and the doubly labelled water method to assess total energy expenditure, we calculated the difference between these two values ((self-report − expenditure/expenditure) × 100) to identify under-reporting of habitual energy intake in selected communities in Ghana, South Africa, Seychelles, Jamaica and the USA. Under-reporting of habitual energy intake was observed in all the five countries. The South African cohort exhibited the highest mean under-reporting ( − 52·1 % of energy) compared with the cohorts of Ghana ( − 22·5 %), Jamaica ( − 17·9 %), Seychelles ( − 25·0 %) and the USA ( − 18·5 %). BMI was the most consistent predictor of under-reporting compared with other predictors. In conclusion, there is substantial under-reporting of dietary energy intake in populations across the whole range of the HDI, and this systematic reporting error increases according to the BMI of an individual.
Ice cores provide a robust reconstruction of past climate. However, development of timescales by annual-layer counting, essential to detailed climate reconstruction and interpretation, on ice cores collected at low-accumulation sites or in regions of compressed ice, is problematic due to closely spaced layers. Ice-core analysis by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) provides sub-millimeter-scale sampling resolution (on the order of 100 μm in this study) and the low detection limits (ng L−1) necessary to measure the chemical constituents preserved in ice cores. We present a newly developed cryocell that can hold a 1 m long section of ice core, and an alternative strategy for calibration. Using ice-core samples from central Greenland, we demonstrate the repeatability of multiple ablation passes, highlight the improved sampling resolution, verify the calibration technique and identify annual layers in the chemical profile in a deep section of an ice core where annual layers have not previously been identified using chemistry. In addition, using sections of cores from the Swiss/Italian Alps we illustrate the relationship between Ca, Na and Fe and particle concentration and conductivity, and validate the LA-ICP-MS Ca profile through a direct comparison with continuous flow analysis results.
In this work we examine the electrical characteristics and the memory properties of metal-alumina-nitride-oxide-silicon (MANOS) devices as a function of the post deposition annealing conditions. Post deposition annealing of the samples was performed at 850 or 1050 °C in nitrogen ambient using two different processes: (1) Furnace annealing for 15 min and (2) rapid thermal annealing for 1 or 5 min. The capacitance equivalent thickness as extracted from the capacitance voltage characteristics depends strongly on the annealing process, being smallest for the furnace annealing. Furthermore, the experimental results indicate that the type of the annealing determines the defect state density of the Al2O3 layer, via which the undesired effect of gate electrode electron injection takes place in the negative voltage regime. For inert ambient annealing the furnace process appears more efficient as compared to RTA.
The behavior of the redox-based resistive switching memories is influenced by chemical interactions between the electrode and the solid electrolyte, as well as by local environment. The existence of different chemical potential gradients is resulting in nanobattery effect lowering the stability of the devices. In order to minimize these effects we introduce a graphene layer at the active electrode – solid electrolyte interface. We observe that graphene is acting as an effective diffusion barrier in the SiO2-based electrochemical metallization cells and acts catalytically on the electrochemical processes prior to resistive switching.