Pollen influx and percentage diagrams were prepared from an 11.4 m core from Moulton Pond, Maine. The pond basin was deglaciated about 14,000 y. a., after which it was located on an island in a sea of subarctic character until about 12,400 y. a. when the surrounding area emerged from the sea. The terrestrial vegetation was tundra until about 10,000 y. a. A change in the tundra vegetation is synchronous with the emergence from the sea, but synchroneity with the Pineo Ridge glacial readvance, which reached its maximum 50 km to the east of the pond about 12,700 y. a., is also possible because of imprecision in the dating. Comparisons of the Moulton Pond results with late-glacial pollen sequences elsewhere in eastern United States and adjacent Canada reveal a lack of synchroneity in vegetational changes casting doubt on claims of major broad-scale climatic shifts over the entire area.
The tundra period at Moulton Pond ended with a transition of a few hundred years to partly open, relatively xeric forests of low diversity dominated by white pine, oak, and birch trees. There was no intervening boreal forest. In the postglacial period the vegetation was continually changing, including in the early portion a series of immigrations of temperate tree taxa which later became important in the forests. The transient nature of these assemblages is further indicated by their differences from the closest modern analogs. From about 7100 y. a. until settlement by Europeans 200 y. a., the forests were closed. A major decline of conifers centering about 4700 y. a. was followed by maxima of mesic hardwoods about a thousand years later. In the most recent 2000 yr, the pollen record suggests greater environmental severity, evidenced by increasing spruce. But for the entire postglacial period, the closest modern vegetational analogs are all in the conifer-hardwood region. Much of the postglacial pollen sequence is inexplicable in climatic terms, as evidenced by nonsynchronous behavior of hemlock and beech.
The pollen influx diagram is useful for distinguishing tundra from forest, but for the postglacial period it is difficult to interpret. Pollen influx data are strongly affected by shifts in the pattern of sedimentation in lakes. We propose that such shifts account for the major changes in influx in mid- and late-postglacial time at Moulton Pond and at Rogers Lake, Connecticut. This complicates the interpretation of influx data which otherwise are superior to percentage data.