We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Knowledge of the genetic diversity and relationships among maize inbred lines can facilitate germplasm management and plant breeding programmes. The study investigated the level of genetic diversity among S6 lines developed from a tropical-adapted shrunken-2 (sh-2) maize population and their relationship with normal endosperm tropical inbred lines of known heterotic groups. Ninety-one sh-2 maize inbred lines (UI1-UI91) developed in the University of Ibadan super-sweet Maize Breeding Programme were genotyped at 30 simple sequence repeat (SSR) loci, alongside five normal endosperm maize inbred lines viz. TZi3, TZi4, TZi10, TZi12 and TZi15, four of which belong to two heterotic groups. Twenty-three SSR markers were polymorphic and detected a total of 61 alleles, with a range of 2–7 and an average of 2.65 alleles per locus. The polymorphic information content ranged from 0.12 in bnlg1937 to 0.77 in phi126, with an average of 0.36. The gene diversity (He) averaged 0.43. Cluster analysis resulted in five groups consisting of 16, 36, 17, 23 and 3 inbred lines, with one sh-2 line ungrouped. TZi 12 and TZi 15, both of which are of the same heterotic group, clustered with TZi 3 of another heterotic group. Considerable genetic diversity exists among the 96 inbred lines. Only two of the five normal endosperm lines shared clusters with the sh-2 lines. The clustering of the normal endosperm inbred lines is not related to their established heterotic patterns. Inbred lines in two clusters offer the possibility of guiding the exploitation of heterosis among the sh-2 lines.
Food security has been suggested to be a risk factor for depression, stress and anxiety. We therefore undertook a systematic review and meta-analysis of available publications to examine these associations further.
Design:
Relevant studies were identified by searching Web of Science, Embase, Scopus and PubMed databases up to January 2019.
Setting:
OR was pooled using a random-effects model. Standard methods were used for assessment of heterogeneity and publication bias.
Participants:
Data were available from nineteen studies with 372 143 individual participants from ten different countries that were pooled for the meta-analysis.
Results:
The results showed there was a positive relationship between food insecurity (FI) and risk of depression (OR = 1·40; 95 % CI: 1·30, 1·58) and stress (OR = 1·34; 95 % CI: 1·24, 1·44) but not anxiety. Subgroup analysis by age showed that subjects older than ≥65 years exhibited a higher risk of depression (OR = 1·75; 95 % CI: 1·20, 2·56) than younger participants (OR = 1·34; 95 % CI: 1·20, 1·50), as well as a greater risk of depression in men (OR = 1·42; 95 % CI: 1·17, 1·72) than women (OR = 1·30; 95 % CI: 1·16, 1·46). Finally, subgroup analysis according to geographical location illustrated that food insecure households living in North America had the highest risk of stress and anxiety.
Conclusions:
The evidence from this meta-analysis suggests that FI has a significant effect on the likelihood of being stressed or depressed. This indicates that health care services, which alleviate FI, would also promote holistic well-being in adults.
The concept of cognitive reserve (CR) hypothesizes that intellectually stimulating activities provide resilience against brain pathology/disease. Whereas brain abnormalities and cognitive impairment are frequently reported in bipolar disorder (BD), it is unknown whether the impact of brain alterations can be lessened by higher CR in BD.
Method
We tested if higher CR would reduce the influence of total volumes of deep white matter hypointensities (WMH), ventricular cerebrospinal fluid (CSF), and prefrontal cortex on memory, executive, and attention/speed functions in patients with BD (n = 75). Linear regression models with interaction terms for CR and brain volumes were applied to directly test if CR reduces the influence of brain pathology on cognitive domains.
Results
CR reduced the influence of total volumes of deep WMH (β = −0.38, Q = 0.003) and ventricular CSF (β = −41, Q = 006) on executive functions.
Conclusions
The interactions between CR and total volumes of deep WMH/ventricular CSF appear to account for executive functioning in BD. The results suggest that the concept of CR is applicable in BD. Higher reserve capacity in BD alters the relationship between brain pathology and clinical presentation.
Documenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.
We present long term site testing statistics based on DIMM and GSM data obtained at Dome C, Antarctica. These data have been collected on the bright star Canopus since the end of 2003. We give values of the integrated turbulence parameters in the visible (wavelength 500 nm). The median value we obtained for the seeing are 1.2 arcsec, 2.0 arcsec and 0.8 arcsec at respective elevations of 8m, 3m and 20m above the ground. The isoplanatic angle median value is 4.0 arcsec and the median outer scale is 7.5m. We found that both the seeing and the isoplanatic angle exhibit a strong dependence with the season (the seeing is larger in winter while the isoplanatic angle is smaller).
The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing continuously towards the celestial South Pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R = 8 to 6% at R = 14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R = 9.85. The 2-season lightcurve folded in phase and binned into 1,000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better detrending algorithm should yield a sub-millimagnitude precision for this folded lightcurve. Radial velocity follow-up observations reveal a F-M binary system. The detection of this 9.9-day period system with a small instrument such as ASTEP South and the precision of the folded lightcurve show the quality of Dome C for continuous photometric observations, and its potential for the detection of planets with orbital periods longer than those usually detected from the ground.
Until recently, the epidemiology and control of schistosomiasis in sub-Saharan Africa have focused primarily on infections in school-aged children and to a lesser extent on adults. Now there is growing evidence and reports of infection in infants and pre-school-aged children (⩽6 years old) in Ghana, Kenya, Mali, Niger, Nigeria and Uganda, with reported prevalence from 14% to 86%. In this review, we provide available information on the epidemiology, transmission and control of schistosomiasis in this age group, generally not considered or included in national schistosomiasis control programmes that are being implemented in several sub-Saharan African countries. Contrary to previous assumptions, we show that schistosomiasis infection starts from early childhood in many endemic communities and factors associated with exposure of infants and pre-school-aged children to infection are yet to be determined. The development of morbidity early in childhood may contribute to long-term clinical impact and severity of schistosomiasis before they receive treatment. Consistently, these issues are overlooked in most schistosomiasis control programmes. It is, therefore, necessary to review current policy of schistosomiasis control programmes in sub-Saharan Africa to consider the treatment of infant and pre-school-aged children and the health education to mothers.
To explore competitive or cooperative effects novel organic-inorganic hybrid copolymers are being prepared and studied. The use of polyhedral oligomeric silsesquioxanes (POSS), a molecularly precise isotropic comonomer, is being utilized to take advantage of the inherent size scale of these particles, average diameters of 1-2 nm. The organic component selected for study in these hybrid systems are either semi-crystalline or amorphous polymers. The architectures of the hybrid copolymers range from random, to precise block copolymers, as well as telechelic and hemi-telechelic end-functionalized model compounds. The degree of POSS aggregation that occurs is found to be a function of thermal history, and processing conditions. Templating, or arresting, aggregation can be achieved using either crystalline organic polymer scaffolds in the bulk. The second inorganic comonomers for study has been constructed from icosahedral carboranes. Dicarbo-closo-decaboranes have been widely investigated for their thermal stability, chemical resistance, unique geometry, and the high cross-section for the capture of thermal neutrons. While carboranes have been widely incorporated into small molecules, metal complexes, and on a limited basis in polymer systems relatively little work exists relating their unique properties to systems with extended π-conjugation. Details of the syntheses, characterization and performance properties of both sets of hybrid systems will be discussed.
ASTEP South is an Antarctic Search for Transiting ExoPlanets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88° × 3.88° field of view to perform photometry of several thousand stars at visible wavelengths (700–900 nm). The first winter campaign in 2008 led to the retrieval of nearly 1600 hours of data. We derive the fraction of photometric nights by measuring the number of detectable stars in the field. The method is sensitive to the presence of small cirrus clouds which are invisible to the naked eye. The fraction of night-time for which at least 50% of the stars are detected is 74% from June to September 2008. Most of the lost time (18.5% out of 26%) is due to periods of bad weather conditions lasting for a few days (“white outs”). Extended periods of clear weather exist. For example, between July 10 and August 10, 2008, the total fraction of time (day+night) for which photometric observations were possible was 60%. This confirms the very high quality of Dome C for nearly continuous photometric observations during the Antarctic winter.
The crystal structure of charoite was investigated mainly by using selected-area electron diffraction (SAED), X-ray diffraction (XRD) and high-resolution electron microscopy (HREM). SAED and XRD patterns indicate that the structure has a monoclinic cell: a = 32.296, b = 19.651, c = 7.16 Å, β = 96.3° and V = 4517 Å3. The space group inferred from systematic absences and HREM images is P21/m. A model of the charoite structure is proposed that is based on the features of related Ca-alkaline silicate structures and HREM images. The structure of charoite consists of three different silicon-oxygen radicals (polymerized SiO4 tetrahedra) which are located between Ca polyhedra. Two of these radicals form continuous tubular structures comprising pectolite-like tetrahedral chains. Calcium polyhedra are joined to form blocks, each of which consists of four columns sharing edges and apices. Potassium and H2O molecules are probably located inside the tubular silicate radicals. From these results, a general formula is derived: K6-7(Ca,Na)18[(Si6O17)(Si12O30)(Si18O45)](OH,F)2.nH2O with two formula units in the unit cell (Z = 2).
Images in visible interferometry are characterised by their low coherence time, and except for brightest stars, the flux on the detector is much less than one photon per pixel per image. Algol and Comptage de Photons Nouvelle Génération (CPNG) are new photon counting cameras developed for high angular resolution in the visible. They are intensified CCDs built to benefit from improvements in photonic commercial components, and personal computer processing power. We present how we achieve optimal performances (sensitivity and spatiotemporal resolution) by the combination of proper optical and electronics design, and real-time elaborated data processing. The number of pixels is 532 × 516 and 768 × 640 read at a frame rate of 262 Hz and 50 Hz for CPNG and Algol respectively. The dark current is very low: 5 × 10-4 electron.pixel-1.s-1. Quantum efficiencies reach up to 36% in the visible with the GaAsP photocathodes and and 26% in the red with the GaAs ones, thanks to the sensitivity of the photocathodes and to the photon centroiding algorithm; they are likely the highest values reported for ICCDs.
ASTEP South is the first phase of the ASTEP project that aims to determine the quality of Dome C as a site for future photometric searches for transiting exoplanets and discover extrasolar planets from the Concordia base in Antarctica. ASTEP South consists of a front-illuminated 4k × 4k CCD camera, a 10 cm refractor, and a simple mount in a thermalized enclosure. A double-glass window is used to reduce temperature variations and the associated turbulence on the optical path. The telescope is fixed and observes a 4° × 4° field of view centered on the celestial South pole. With this design, A STEP South is very stable and observes with low and constant airmass, both being important issues for photometric precision. We present the project, we show that enough stars are present in our field of view to allow the detection of one to a few transiting giant planets, and that the photometric precision of the instrument should be a few mmag for stars brighter than magnitude 12 and better than 10 mmag for stars of magnitude 14 or less.
Diffraction microscopy (or diffractive imaging) with iterative phase retrieval was performed using a low-energy (20-keV) electron beam to verify the possibility of high-resolution imaging with low specimen damage. Diffraction patterns of fine and uniform multi-wall carbon nanotubes (MWCNT) were recorded without a post-specimen lens. One- and two-dimensional phase retrievals were processed from the diffraction pattern alone. The reconstructed object images reflected the characteristic structure of the MWCNT. These results show the possibility of high-resolution imaging with a low-energy electron beam.