The study and application of antimicrobial peptides is a growing niche field in the areas of pharmaceutics and medicinal chemistry. As a result, the majority of testing and development is completed under in vitro conditions. The use of synthetically derived antimicrobial peptides in applications outside the medical realm is a relatively untapped field, with the significance of interactions between antimicrobial oligopeptides and the ingredients of polymer systems being largely unknown. Water-based polymer coatings systems are attractive targets for microbial invasion because of their inherent material properties. Water-based polymer latex coatings contain a number of components which aide in stabilization and coalescence of the polymer particles, such as surfactants and polymeric cellulose-derived molecules, with several types of molecular structures existing for each. Microbes are able to flourish within the water phase of the latexes while taking sustenance from these dispersion components, resulting in a loss of properties commonly known as ‘spoilage’. This work addresses the impact of formulation variables, specifically surfactant structure, on the solution and antimicrobial behavior of a model antimicrobial oligopeptides through the use of HT absorbance measurements.