We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present an experimental study on controlling the number of vortices and the torque in a Taylor–Couette flow of water for Reynolds numbers from 660 to 1320. Different flow states are achieved in the annulus of width
$d$
between the inner rotating and outer stationary cylinders through manipulating the initial height of the water annulus. We show that the torque exerted on the inner cylinder of the Taylor–Couette system can be reduced by up to 20 % by controlling the flow at a state where fewer than the nominal number of vortices develop between the cylinders. This flow state is achieved by starting the system with an initial water annulus height
$h_0$
(which nominally corresponds to
$h_0/d$
vortices), then gradually adding water into the annulus while the inner cylinder keeps rotating. During this filling process the flow topology is so persistent that the number of vortices does not increase; instead, the vortices are greatly stretched in the axial (vertical) direction. We show that this state with stretched vortices is sustainable until the vortices are stretched to around 2.05 times their nominal size. Our experiments reveal that by manipulating the initial height of the liquid annulus we are able to generate different flow states and demonstrate how the different flow states manifest themselves in global momentum transport.
Coronavirus disease 2019 (COVID-19) is a global health threat. A hospital in Zhuhai adopted several measures in Fever Clinic Management (FCM) to respond to the outbreak of COVID-19. FCM has been proved to be effective in preventing nosocomial cross infection. Faced with the emergency, the hospital undertook creative operational steps in relation to the control and spread of COVID-19, with special focuses on physical and administrative layout of buildings, staff training and preventative procedures. The first operational step was to set up triaging stations at all entrances and then complete a standard and qualified fever clinic, which was isolated from the other buildings within our hospital complex. Secondly, the hospital established its human resource reservation for emergency response and the allocation of human resources to ensure strict and standardised training methods through the hospital for all medical staff and ancillary employees. Thirdly, the hospital divided the fever clinic into partitioned areas and adapted a three-level triaging system. The experiences shared in this paper would be of practical help for the facilities that are encountering or will encounter the challenges of COVID-19, i.e. to prevent nosocomial cross infection among patients and physicians.
In this paper, CuCr–Zr alloys prepared by vacuum melting with adding La and Ni elementswere heat-treated and aged, followed by plastic deformation using low-energy cyclic impact tests, to simultaneously improve their mechanical and electrical properties. Results showed that the grain size of the casted Cu–Cr–Zr alloys was significantly reduced after the solid-solution aging and plastic deformation process. There were a lot of dispersed Cr and Cu5Zr precipitates formed in the alloys, and the numbers of dislocations were significantly increased. Accordingly, the hardness was increased from 78 to 232 HV, and the tensile strength was increased from 225 to 691 MPa. Electrical conductivity has not been significantly affected after these processes. The enhancement of overall performance is mainly attributed to the combined effects of solid-solution hardening, fine grain hardening, and precipitation/dislocation strengthening.
Archaeological research has documented the migration of Neolithic farmers onto the Tibetan Plateau by 4000 BC. How these incoming groups interacted, if at all, with local indigenous foragers, however, remains unclear. New archaeobotanical and zooarchaeological data from the Zongri site in the north-eastern Tibetan Plateau suggest that local foragers continued to hunt but supplemented their diet with agricultural products in the form of millet. The authors propose that, rather than being grown locally, this millet was acquired via exchange with farmers. This article highlights how indigenous foragers engaged in complex patterns of material and cultural exchange through encounters with newly arrived farmers.
Fe–6.5 Si–0.05 B alloy was used in the study to investigate the texture evolution and magnetic property of the ferromagnetic crystal under an axial high magnetic field during bulk solidification. Optical microscopy (OM) and X-ray diffraction (XRD) were applied to analyze the microstructures and texture evolution of the alloy solidified under different magnetic field intensities. The result shows that with an increase in the magnetic field intensity from 0 to 2 T, the texture gradually changes from random orientation to {100} 〈120〉, eventually becoming a mixture of cube and Goss texture. The alloys treated at 1 and 2 T showed magnetic anisotropic behavior, while the alloy treated at 0 T showed magnetic isotropic behavior. The change in magnetic property comes from the evolution of α-Fe crystal orientation. Furthermore, a method for controlling the crystallization process and crystallographic orientation by adjusting the magnetic field intensity was proposed.
Composite materials include various components with different structures, which cooperatively increase their properties and extend their application. In this study, the graphitic carbon nitride (g-C3N4) guest material was assembled into the porous of the SiO2 aerogel, which was prepared during the gel process. By this way, the g-C3N4 could be absolutely encapsulated into the porous of the disordered porous SiO2 aerogel. The prepared g-C3N4/SiO2 composite had a loose porous structure and exhibited the much higher photocatalytic activity to the photodegradation of rhodamine B (RhB) under visible light. The disordered porous structure enhanced photocatalytic activity, and the degradation rate reached to 96.42% in 90 min under the irradiation of visible light, which could be attributed to its high surface area and effective electron–hole separation rate. The catalyst had the much higher stability and could be easily recycled utilization. The prepared composites could be applied to degrade organic pollutants in wastewater.
The number of elderly individuals living in China is increasing rapidly. The aim of this study was to examine the potential risk factors of geriatric depression in rural areas.
Methods:
A repeated cross-sectional study was conducted between January 2015 and October 2016 in rural China. Nine hundred forty-five elderly individuals were included in both investigations. A generalized estimating equation (GEE) was used to examine the relationships between geriatric depression and socio-demographics, the number of chronic diseases, ADL (Activity of Daily Living) disability, cognitive impairment, and anxiety.
Results:
Among the participants, the majority was female (61.4%) and illiterate (81.5%) and had a general economic status (63.0%) and more than two kinds of chronic diseases (62.9%). The bivariate analysis indicated that geriatric depression was associated with social support, education level, economic status, ADL disability, anxiety disorders, and cognitive impairment at both survey time points. The GEE results showed that poor economic status (OR = 8.294, p < 0.001), the presence of more than two chronic diseases (OR = 1.681, p = 0.048), ADL disability (OR = 2.184, p < 0.001), cognitive impairment (OR = 1.921, p < 0.001), and anxiety (OR = 5.434, p < 0.001) were risk factors for geriatric depression in rural China; better social support (OR = 0.924, 95% CI = 0.899–0.949, p < 0.001) was found to be a protective factor.
Conclusions:
Geriatric depression in rural China was associated with several socio-demographic, physical, and mental factors. Targeted interventions are essential to improve the psychological health of aged individuals in rural China.
Salt, promoting oxidative stress, contributes to insulin resistance, whereas K, inhibiting oxidative stress, improves insulin sensitivity. Oxidative stress activation of NLRP3 inflammasome is a central player in the induction of insulin resistance. Therefore, we hypothesised that NLRP3 inflammasome may mediate the effects of salt and K on insulin resistance. In all, fifty normotensive subjects were recruited from a rural community of Northern China. The protocol included a low-salt diet for 7 d, then a high-salt diet for 7 d and a high-salt diet with K supplementation for another 7 d. In addition, THP-1 cells were cultured in different levels of Na with and without K. The results showed that salt loading elevated fasting blood glucose, insulin and C-peptide levels, as well as insulin resistance, whereas K supplementation reversed them. Meanwhile, additional K reversed the active effects of high salt on NLRP3 inflammasome in both the subjects and THP-1 cells, and the change of insulin resistance index notably related with the alteration of plasma IL-1β, the index of NLRP3 inflammasome activation, during intervention in the subjects. Additional K ameliorated oxidative stress induced by high salt in both the subjects and cultured THP-1 cells, and the change of oxidative stress related with the alteration of plasma IL-1β during intervention in the subjects. In vitro, antioxidant N-acetyl-l-cysteine significantly prevented the active effects of high Na or oxidant Rosup on NLRP3 inflammasome, so did K. Our study indicates that oxidative stress modulation of NLRP3 inflammasome may be involved in the impacts of Na and K on insulin resistance.
The Shen-Guang II Upgrade (SG-II-U) laser facility consists of eight high-power nanosecond laser beams and one short-pulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion (ICF), especially for conducting fast ignition (FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications (30 and
$20~\unicode[STIX]{x03BC}\text{m}$
rms for each case). To explore new ICF ignition targets with six laser entrance holes (LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor (TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed.
In the theory of spontaneous combustion, identifying the critical value of the Frank-Kamenetskii parameter corresponds to solving a bifurcation point problem. There are two different numerical methods used to solve this problem—the direct and indirect numerical methods. The latter finds the bifurcation point by solving a partial differential equation (PDE) problem. This is a better method to find the bifurcation point for complex geometries. This paper improves the indirect numerical method by combining the grid-domain extension method with the matrix equation computation method. We calculate the critical parameters of the Frank-Kamenetskii equation for some complex geometries using the indirect numerical method. Our results show that both the curve of the outer boundary and the height of the geometries have an effect on the values of the critical Frank-Kamenetskii parameter, however, they have little effect on the critical dimensionless temperature.
In high power laser facility for inertial confinement fusion research, final optics assembly (FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis, the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass. Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
Recent multidisciplinary research indicates that prehistoric agriculture innovation promoted permanent human settlements of areas up to 3400 m above sea level (asl) in the northern Tibetan Plateau, but when and how ancient humans extensively occupied areas above that altitude remains uncertain. In this paper, we investigated 12 archaeological sites situated above 3600 m asl in the Yushu autonomous prefecture, east-central Tibetan Plateau, to explore this issue. We determined the ages of five sites using the radiocarbon (14C) dating method and identified animal bones sampled from three sites. The dating results show that humans occasionally occupied the Yushu area around 900 BC, and permanently inhabited the area between AD 540 and 1620. Preliminary faunal identifications indicate human-raised livestock including yak, sheep, and horse during the latter period. Stone-constructed tombs and rock painting were found at some investigated sites, suggesting humans perhaps engaged in a pastoral lifestyle during the very late Holocene in the high altitude Yushu area, where nomadic livestock production remains the current primary subsistence strategy focus.
In this paper, we give some rigidity results for both harmonic and pseudoharmonic maps from pseudo-Hermitian manifolds into Riemannian manifolds or Kähler manifolds. Some foliated results, pluriharmonicity and Siu–Sampson type results are established for both harmonic maps and pseudoharmonic maps.
Numerical simulations are used to investigate the hydrodynamic benefits of body–fin and fin–fin interactions in a fish model in carangiform swimming. The geometry and kinematics of the model are reconstructed in three-dimensions from high-speed videos of a live fish, Crevalle Jack (Caranx hippos), during steady swimming. The simulations employ an immersed-boundary-method-based incompressible Navier–Stokes flow solver that allows us to quantitatively characterize the propulsive performance of the fish median fins (the dorsal and the anal fins) and the caudal fin using three-dimensional full body simulations. This includes a detailed analysis of associated performance enhancement mechanisms and their connection to the vortex dynamics. Comparisons are made using three different models containing different combinations of the fish body and fins to provide insights into the force production. The results indicate that the fish produces high performance propulsion by utilizing complex interactions among the fins and the body. By connecting the vortex dynamics and surface force distribution, it is found that the leading-edge vortices produced by the caudal fin are associated with most of the thrust production in this fish model. These vortices could be strengthened by the vorticity capture from the vortices generated by the posterior body during undulatory motion. Meanwhile, the pressure difference between the two sides of posterior body resulting from the posterior body vortices (PBVs) helps with the alleviation of the body drag. The appearance of the median fins in the posterior region further strengthens the PBVs and caudal-fin wake capture mechanism. This work provides new physical insights into how body–fin and fin–fin interactions enhance thrust production in swimming fishes, and emphasizes that movements of both the body and fins contribute to overall swimming performance in fish locomotion.
Although alterations in the dendritic spine density in the brain regions may play a role in the stress-induced depression-like phenotype, the precise mechanisms are unknown. The aim was to investigate the role of spine density in the brain regions after chronic social defeat stress (CSDS).
Methods
We examined dendritic spine density in the medial prefrontal cortex (mPFC), CA1, CA3, dentate gyrus (DG) of hippocampus, nucleus accumbens (NAc), and ventral tegmental area (VTA) of susceptible and resilient mice after CSDS.
Results
Spine density in the prelimbic area of mPFC, CA3, and DG in the susceptible group, but not resilient group, was significantly lower than control group. In contrast, spine density in the NAc and VTA in the susceptible group, but not resilient group, was significantly higher than control group.
Conclusions
The results suggest that regional differences in spine density may contribute to resilience versus susceptibility in mice subjected to CSDS.
The genus Orthobittacus was established by Willmann (1989) and is characterised by a long Sc vein and the unusually developed medial sector for the Bittacidae. Four Jurassic species have been described in this genus to date: O. abshiricus (Martynova, 1951) from Kirgizia; O.desacuminatus (Bode, 1953) from Braunschweig (Germany); O. polymitus Novokshonov, 1996 from Karatau (Kazakhstan); and O. maculosus Liu, Shih, Bashkuev & Ren, 2016 from the Jiulongshan Formation of Daohugou (China). The fifth congeneric and second species from China, O. suni sp. nov., is described herein. The importance of the genus Orthobittacus for the phylogeny of Bittacidae, as the most plesiomorphic genus, is discussed.
Microstructural and property evolution of 1050 commercial pure aluminum subjected to high-strain-rate deformation (1.2–2.3 × 103 s−1) by split Hopkinson pressure bar (SHPB) and subsequent annealing treatment were investigated. The as-deformed and their annealed samples at 373–523 K were characterized by transmission electron microscopy (TEM) and microhardness tests. TEM observations reveal that the as-deformed sample is mainly composed of a lamellar structure, whose transverse/longitudinal average subgrain/cell sizes are 293 and 694 nm, respectively. The initial coarse grains are refined significantly. The initial lamellar grain structures are subdivided into pancake-shaped subgrains due to a gradual transition by triple junction motion at 473 K, and then a dramatic microstructural coarsening is observed at 523 K. It is suggested that annealing behavior of this dynamic loading structure is better considered as a continuous process of grain coarsening or continuous recovery.
A new genus and species, Aclemus patulus n. gen. n. sp., is described based on a new specimen collected from the latest Middle Jurassic Jiulongshan Formation in Inner Mongolia, China. Based on a combination of characters from this fossil, including a homonomous fore- and hindwing, a 3-branched media vein, wings lacking long cilia on their margins; and a cross-vein absent between subcosta and radius, we establish a new genus assigned to the Eolepidopterigidae. In addition, the diagnosis of Longcapitalis excelsus Zhang, Shih, Labandeira and Ren 2013, is emended based on new fossil material.
The association of 24 h urinary Na and potassium excretion with the risk of the metabolic syndrome (MetS) has not been studied in China. The aim of the present study was to examine this association by analysing the data from 1906 study participants living in north China. To this end, 24 h urine samples were collected. Of the 1906 participants, 471 (24·7 %) had the MetS. The mean urinary Na and K excretion was 228·7 and 40·8 mmol/d, respectively. After multivariate adjustment, the odds of the MetS significantly increased across the increasing tertiles of urinary Na excretion (1·00, 1·40 and 1·54, respectively). For the components of the MetS, the odds of central obesity, elevated blood pressure and elevated TAG, but not the odds of low HDL-cholesterol and elevated fasting glucose, significantly increased with the successive tertiles of urinary Na excretion. Furthermore, for every 100 mmol/d increase in urinary Na excretion, the odds of the MetS, central obesity, elevated blood pressure and elevated TAG was significantly increased by 29, 63, 22 and 21 %, respectively. However, urinary K excretion was not significantly associated with the risk of the MetS. These findings suggest that high Na intake might be an important risk factor for the MetS in Chinese adults.