Adsorption processes are important in controlling U concentrations in ground water. Quantifying such processes is extremely difficult in that in situ conditions cannot be directly measured. One rock characteristic that must be known to quantify adsorption is the specific surface area of reactive minerals exposed to the ground water. We evaluate here three methods for estimating specific surface area in situ. The first is based on the dissolution kinetics of sodium feldspars, the second on emanation of radon-222 and the third on adsorption of naturally-occurring U. The radon-222 method yields estimates 5 to 8 orders of magnitude greater than those obtained via the other two methods; too large probably because of effects related to fracture geometry. Estimates of specific surface area based on modelling adsorption of natural U by aquifer materials are of comparable magnitude to those from the feldspar-dissolution kinetics approach. These conclusions are based on analyses of water from 145 wells in crystalline-rock aquifers from Pennsylvania, New Jersey, Maryland, and Colorado. Computer modelling of the chemical data using PHREEQE [1] showed that uraninite or coffinite approach saturation in reducing water, limiting total U to <2 × 10−9 m. Generally, U minerals are below saturation in oxidizing ground water, where uranyl-carbonate complexes are the dominant dissolved U species. Autoradioluxographs of thin sections show areas of concentration of radioactivity in the rocks and establish that U is concentrated along fracture boundaries and on ferric oxyhydroxide grain coatings. Because U minerals generally are undersaturated, U mobility is limited by adsorption onto ferric oxyhydroxides and other mineral surfaces. Calculations of uranyl adsorption from the ground water onto goethite using the program M1NTEQ [2] show that adsorption decreases with increased carbonate concentrations due to the formation of uranyl-carbonate complexes. Results of this paper improve our understanding of the mobility of U that might be released into oxidized ground water in crystalline rock from a breached radioactive-waste repository.