The pursuit of rewarding experiences motivates everyday human behavior, and can prove beneficial when pleasurable, positive consequences result (e.g., satisfying hunger, earning a paycheck). However, reward seeking may also be maladaptive and lead to risky decisions with potentially negative long-term consequences (e.g., unprotected sex, drug use). Such risky decision making is often observed during adolescence, a time in which important structural and functional refinements occur in the brain's reward circuitry. Although much of the brain develops before adolescence, critical centers for goal-directed behavior, such as frontal corticobasal ganglia networks, continue to mature. These ongoing changes may underlie the increases in risk-taking behavior often observed during adolescence. Further, typical development of these circuits is vital to our ability to make well-informed decisions; atypical development of the human reward circuitry can have severe implications, as is the case in certain clinical and developmental conditions (e.g., attention-deficit/hyperactivity disorder). This review focuses on current research probing the neural correlates of reward-related processing across human development supporting the current research hypothesis that immature or atypical corticostriatal circuitry may underlie maladaptive behaviors observed in adolescence.