In this paper, we demonstrate the use of thermal probe method that is capable of mapping Seebeck coefficient, thermal conductivity and contact resistance on a micrometer scale. We show the successful screening example on pseudo binary (Bi1−xSbx)2Te3 (0.5<x<1) bulk composition-spread sample prepared by conventional powder metallurgy process. Another demonstration is a novel attempt to combine the combinatorial PLD and the thermal probe method. A pseudo ternary diagram of nickel-copper-manganese oxides fabricated on Nb doped STO substrate was used for the screening. The mapping of electrical resistance over the ternary diagram yields a lot of information, which is essential for materials researches on complex, multi-composition systems.