We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Significant advances in the research of sport-related concussion (SRC) and repetitive head impacts (RHI) over the previous decade have translated to improved injury identification, diagnosis, and management. However, an objective gold standard for SRC/RHI treatment has remained elusive. SRC often result in heterogenous clinical outcomes, and the accumulation of RHI over time is associated with long-term declines in neurocognitive functioning. Medical management typically entails an amalgamation of outpatient medical treatment and psychiatric and/or behavioral interventions for specific symptoms rather than treatment of the underlying functional and/or structural brain injury. Transcranial photobiomodulation (tPBM), a form of light therapy, has been proposed as a non-invasive treatment for individuals with traumatic brain injuries (TBI), possibly including SRC/RHI. With the present proof-of-concept pilot study, we sought to address important gaps in the neurorehabilitation of former athletes with a history of SRC and RHI by examining the effects of tPBM on neurocognitive functioning.
Participants and Methods:
The current study included 49 participants (45 male) with a history of SRC and/or RHI. Study inclusion criteria included: age 18-65 years and a self-reported history of SRC and/or RHI. Exclusion criteria included: a history of neurologic disease a history of psychiatric disorder, and MRI contraindication. We utilized a non-randomized proof-of-concept design of active treatment over the course of 8-10 weeks, and neurocognitive functioning was assessed at pre- and post-treatment. A Vielight Neuro Gamma at-home brain tPBM device was distributed to each participant following baseline assessment.
Participants completed standardized measures of neurocognitive functioning, including the California Verbal Learning Test (CVLT-3), Delis Kaplan Executive Function System (D-KEFS), Continuous Performance Test (CPT-3), and The NIH Toolbox Cognition Battery. Neurocognitive assessments were collected prior to and following tPBM treatment. Paired t-tests and Wilcoxon’s signed-rank tests were used to evaluate change in performance on measures of neurocognitive functioning for normal and nonnormal variables, respectively, and estimates of effect size were obtained.
Results:
Study participants’ ability for adapting to novel stimuli and task requirements (i.e., fluid cognition; t=5.96; p<.001; d=.90), verbal learning/encoding (t=3.20; p=.003; d=.48) and delayed recall (z=3.32; p=.002; d=.50), processing speed (t=3.13; p=.003; d=.47), sustained attention (t=-4.39; p<.001; d=-.71), working memory (t=3.61; p=.001; d=.54), and aspects of executive functioning improved significantly following tPBM treatment. No significant improvements in phonemic and semantic verbal fluencies, reading ability, and vocabulary were shown following tPBM treatment.
Conclusions:
The results of this pilot study demonstrate that following 8-10 weeks of active tPBM treatment, retired athletes with a history of SRC and/or RHI experienced significant improvements in fluid cognition, learning and memory, processing speed, attention, working memory, and aspects of executive functioning. Importantly, the majority of effect sizes ranged from moderate to large, suggesting that tPBM has clinically meaningful improvements on neurocognitive functioning across various cognitive domains. These results offer support for future research employing more rigorous study designs on the potential neurorehabilitative effects of tPBM in athletes with SRC/RHI.
Precision and accuracy of quantitative scanning transmission electron microscopy (STEM) methods such as ptychography, and the mapping of electric, magnetic, and strain fields depend on the dose. Reasonable acquisition time requires high beam current and the ability to quantitatively detect both large and minute changes in signal. A new hybrid pixel array detector (PAD), the second-generation Electron Microscope Pixel Array Detector (EMPAD-G2), addresses this challenge by advancing the technology of a previous generation PAD, the EMPAD. The EMPAD-G2 images continuously at a frame-rates up to 10 kHz with a dynamic range that spans from low-noise detection of single electrons to electron beam currents exceeding 180 pA per pixel, even at electron energies of 300 keV. The EMPAD-G2 enables rapid collection of high-quality STEM data that simultaneously contain full diffraction information from unsaturated bright-field disks to usable Kikuchi bands and higher-order Laue zones. Test results from 80 to 300 keV are presented, as are first experimental results demonstrating ptychographic reconstructions, strain and polarization maps. We introduce a new information metric, the maximum usable imaging speed (MUIS), to identify when a detector becomes electron-starved, saturated or its pixel count is mismatched with the beam current.
We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80–200 keV electron beams.
Traumatic brain injury (TBI) results in a variable degree of cerebral atrophy that is not always related to cognitive measures across studies. However, the use of different methods for examining atrophy may be a reason why differences exist. The purpose of this manuscript was to examine the predictive utility of seven magnetic resonance imaging (MRI) -derived brain volume or indices of atrophy for a large cohort of TBI patients (n = 65). The seven quantitative MRI (qMRI) measures included uncorrected whole brain volume, brain volume corrected by total intracranial volume, brain volume corrected by the ratio of the individual TICV by group TICV, a ventricle to brain ratio, total ventricular volume, ventricular volume corrected by TICV, and a direct measure of parenchymal volume loss. Results demonstrated that the various qMRI measures were highly interrelated and that corrected measures proved to be the most robust measures related to neuropsychological performance. Similar to an earlier study that examined cerebral atrophy in aging and dementia, these results suggest that a single corrected brain volume measure is all that is necessary in studies examining global MRI indicators of cerebral atrophy in relationship to cognitive function making additional measures of global atrophy redundant and unnecessary. (JINS, 2011, 17, 308–316)