We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a Lie group, let
$\Gamma \subset G$
be a discrete subgroup, let
$X=G/\Gamma $
and let f be an affine map from X to itself. We give conditions on a submanifold Z of X that guarantee that the set of points
$x\in X$
with f-trajectories avoiding Z is hyperplane absolute winning (a property which implies full Hausdorff dimension and is stable under countable intersections). A similar result is proved for one-parameter actions on X. This has applications in constructing exceptional geodesics on locally symmetric spaces and in non-density of the set of values of certain functions at integer points.
We give an integrability criterion on a real-valued non-increasing function $\unicode[STIX]{x1D713}$ guaranteeing that for almost all (or almost no) pairs $(A,\mathbf{b})$, where $A$ is a real $m\times n$ matrix and $\mathbf{b}\in \mathbb{R}^{m}$, the system
is solvable in $\mathbf{p}\in \mathbb{Z}^{m}$, $\mathbf{q}\in \mathbb{Z}^{n}$ for all sufficiently large $T$. The proof consists of a reduction to a shrinking target problem on the space of grids in $\mathbb{R}^{m+n}$. We also comment on the homogeneous counterpart to this problem, whose $m=n=1$ case was recently solved, but whose general case remains open.
Let $\unicode[STIX]{x1D713}:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}$ be a non-increasing function. A real number $x$ is said to be $\unicode[STIX]{x1D713}$-Dirichlet improvable if it admits an improvement to Dirichlet’s theorem in the following sense: the system
has a non-trivial integer solution for all large enough $t$. Denote the collection of such points by $D(\unicode[STIX]{x1D713})$. In this paper we prove that the Hausdorff measure of the complement $D(\unicode[STIX]{x1D713})^{c}$ (the set of $\unicode[STIX]{x1D713}$-Dirichlet non-improvable numbers) obeys a zero-infinity law for a large class of dimension functions. Together with the Lebesgue measure-theoretic results established by Kleinbock and Wadleigh [A zero-one law for improvements to Dirichlet’s theorem. Proc. Amer. Math. Soc.146 (2018), 1833–1844], our results contribute to building a complete metric theory for the set of Dirichlet non-improvable numbers.
Let $\Vert \cdot \Vert$ denote the distance to the nearest integer and, for a prime number $p$, let $|\cdot |_{p}$ denote the $p$-adic absolute value. Over a decade ago, de Mathan and Teulié [Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), 229–245] asked whether $\inf _{q\geqslant 1}$$q\cdot \Vert q{\it\alpha}\Vert \cdot |q|_{p}=0$ holds for every badly approximable real number ${\it\alpha}$ and every prime number $p$. Among other results, we establish that, if the complexity of the sequence of partial quotients of a real number ${\it\alpha}$ grows too rapidly or too slowly, then their conjecture is true for the pair $({\it\alpha},p)$ with $p$ an arbitrary prime.
We prove that the countable intersection of C1-diffeomorphic images of certain Diophantine sets has full Hausdorff dimension. For example, we show this for the set of badly approximable vectors in ℝd, improving earlier results of Schmidt and Dani. To prove this, inspired by ideas of McMullen, we define a new variant of Schmidt's (α,β)-game and show that our sets are hyperplane absolute winning (HAW), which in particular implies winning in the original game. The HAW property passes automatically to games played on certain fractals, thus our sets intersect a large class of fractals in a set of positive dimension. This extends earlier results of Fishman to a more general set-up, with simpler proofs.
Given an integer matrix M∈GLn(ℝ) and a point y∈ℝn/ℤn, consider the set S. G. Dani showed in 1988 that whenever M is semisimple and y∈ℚn/ℤn, the set has full Hausdorff dimension. In this paper we strengthen this result, extending it to arbitrary M∈GLn(ℝ)∩Mn×n(ℤ) and y∈ℝn/ℤn, and in fact replacing the sequence of powers of M by any lacunary sequence of (not necessarily integer) m×n matrices. Furthermore, we show that sets of the form and their generalizations always intersect with ‘sufficiently regular’ fractal subsets of ℝn. As an application, we give an alternative proof of a recent result [M. Einsiedler and J. Tseng. Badly approximable systems of affine forms, fractals, and Schmidt games. Preprint, arXiv:0912.2445] on badly approximable systems of affine forms.
We study Hele–Shaw flows with a moving boundary and multipole singularities. We find that such flows can be defined only on a finite time interval. Using a complex variable approach, we construct a family of explicit solutions for a single multipole. These solutions turn out to have the maximal possible lifetime in a certain class of solutions.
We also discuss the generalized Hele-Shaw model in which surface tension at the moving boundary is considered, and develop a method of finding steady shapes. This method yields new one-parameter families of stationary solutions. In the Appendix we discuss a connection between these solutions and a variational problem of potential theory.
Various $p$-adic versions of Littlewood's conjecture are investigated, generalizing a set-up considered recently by de Mathan and Teulié. In many cases it is shown that the sets of exceptions to these conjectures have Hausdorff dimension zero. The proof follows the measure ridigity approach of Einsiedler, Katok and Lindenstrauss.
Let $F$ be a nonquasi-unipotent one-parameter (cyclic) subgroup of a unimodular Lie group $G$, $\Gamma$ a discrete subgroup of $G$. We prove that for certain classes of subsets $Z$ of the homogeneous space $G/\Gamma$, the set of points in $G/\Gamma$ with $F$-orbits staying away from $Z$ has full Hausdorff dimension. From this we derive applications to geodesic flows on manifolds of constant negative curvature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.