We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Data from neurocognitive assessments may not be accurate in the context of factors impacting validity, such as disengagement, unmotivated responding, or intentional underperformance. Performance validity tests (PVTs) were developed to address these phenomena and assess underperformance on neurocognitive tests. However, PVTs can be burdensome, rely on cutoff scores that reduce information, do not examine potential variations in task engagement across a battery, and are typically not well-suited to acquisition of large cognitive datasets. Here we describe the development of novel performance validity measures that could address some of these limitations by leveraging psychometric concepts using data embedded within the Penn Computerized Neurocognitive Battery (PennCNB).
Methods:
We first developed these validity measures using simulations of invalid response patterns with parameters drawn from real data. Next, we examined their application in two large, independent samples: 1) children and adolescents from the Philadelphia Neurodevelopmental Cohort (n = 9498); and 2) adult servicemembers from the Marine Resiliency Study-II (n = 1444).
Results:
Our performance validity metrics detected patterns of invalid responding in simulated data, even at subtle levels. Furthermore, a combination of these metrics significantly predicted previously established validity rules for these tests in both developmental and adult datasets. Moreover, most clinical diagnostic groups did not show reduced validity estimates.
Conclusions:
These results provide proof-of-concept evidence for multivariate, data-driven performance validity metrics. These metrics offer a novel method for determining the performance validity for individual neurocognitive tests that is scalable, applicable across different tests, less burdensome, and dimensional. However, more research is needed into their application.
We construct families of translationally invariant, nearest-neighbour Hamiltonians on a 2D square lattice of d-level quantum systems (d constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant. Moreover, this constant can be taken equal to the operator norm of the local operator that generates the Hamiltonian (the local interaction strength). The result still holds true if one restricts to arbitrarily small quantum perturbations of classical Hamiltonians. The proof combines a robustness analysis of Robinson’s aperiodic tiling, together with tools from quantum information theory: the quantum phase estimation algorithm and the history state technique mapping Quantum Turing Machines to Hamiltonians.
Acupuncture has become increasingly popular in veterinary medicine. Within the scientific literature there is debate regarding its efficacy. Due to the complex nature of acupuncture, a scoping review was undertaken to identify and categorize the evidence related to acupuncture in companion animals (dogs, cats, and horses). Our search identified 843 relevant citations. Narrative reviews represented the largest proportion of studies (43%). We identified 179 experimental studies and 175 case reports/case series that examined the efficacy of acupuncture. Dogs were the most common subjects in the experimental trials. The most common indication for use was musculoskeletal conditions, and the most commonly evaluated outcome categories among experimental trials were pain and cardiovascular parameters. The limited number of controlled trials and the breadth of indications for use, outcome categories, and types of acupuncture evaluated present challenges for future systematic reviews or meta-analyses. There is a need for high-quality randomized controlled trials addressing the most common clinical uses of acupuncture, and using consistent and clinically relevant outcomes, to inform conclusions regarding the efficacy of acupuncture in companion animals.
Data from the in-school sample of the PROSPER preventive intervention dissemination trial were used to investigate associations between alcohol dehydrogenase genes and alcohol use across adolescence, and whether substance misuse interventions in the 6th and 7th grades (targeting parenting, family functioning, social norms, youth decision making, and peer group affiliations) modified associations between these genes and adolescent use. Primary analyses were run on a sample of 1,885 individuals and included three steps. First, we estimated unconditional growth curve models with separate slopes for alcohol use from 6th to 9th grade and from 9th to 12th grade, as well as the intercept at Grade 9. Second, we used intervention condition and three alcohol dehydrogenase genes, 1B (ADH1B), 1C (ADH1C), and 4 (ADH4) to predict variance in slopes and intercept. Third, we examined whether genetic influences on model slopes and intercepts were moderated by intervention condition. The results indicated that the increase in alcohol use was greater in early adolescence than in middle adolescence; two of the genes, ADH1B and ADH1C, significantly predicted early adolescent slope and Grade 9 intercept, and associations between ADH1C and both early adolescent slope and intercept were significantly different across control and intervention conditions.
The introduced exotic vines pale and black swallowwort rapidly have become invasive throughout regions of the northeastern United States and adjoining areas of Canada. Preliminary studies have reported that the species are allelopathic, possibly contributing to their competitive ability and invasiveness. Results from our laboratory assays indicated that swallowwort root exudates caused significant root length reductions (e.g., 40% for butterfly milkweed and 20% for large crabgrass) and reduced germination (e.g., 25% for lettuce) of indicator species. Additional bioassays with dried swallowwort tissues demonstrated that tissue leachates caused varied responses in indicators, with both significant stimulatory and inhibitory effects. In particular, significant congeneric interactions were noted between the two swallowwort species. Evidence from this study of swallowwort tissue phytotoxicity has important implications for developing effective management and habitat restoration strategies for the two invasive species.
Sediment records from two lakes in the east-central Sierra Nevada, California, provide evidence of cooling and hydrological shifts during the Younger Dryas stade (YD; ~ 12,900–11,500 cal yr BP). A chironomid transfer function suggests that lake-water temperatures were depressed by 2°C to 4°C relative to maximum temperatures during the preceding Bølling–Allerød interstade (BA; ~ 14,500–12,900 cal yr BP). Diatom and stable isotope records suggest dry conditions during the latter part of the BA interstade and development of relatively moist conditions during the initiation of the YD stade, with a reversion to drier conditions later in the YD. These paleohydrological inferences correlate with similar timed changes detected in the adjacent Great Basin. Vegetation response during the YD stade includes the development of more open and xeric vegetation toward the end of the YD. The new records support linkages between the North Atlantic, the North Pacific, and widespread YD cooling in western North America, but they also suggest complex hydrological influences. Shifting hydrological conditions and relatively muted vegetation changes may explain the previous lack of evidence for the YD stade in the Sierra Nevada and the discordance in some paleohydrological and glacial records of the YD stade from the western United States.
The past decade has witnessed a dramatic acceleration in research on the role of the neuropeptides in the regulation of eating behavior and body weight homeostasis. This expanding research focus has been driven in part by increasing public health concerns related to obesity and the eating disorders anorexia nervosa (AN) and bulimia nervosa (BN). Preclinical advances have been facilitated by the development of new molecular and behavioral research methodologies. With a focus on clinical investigations in AN and BN, this article reviews research on selected hypothalamic and gut-related peptide systems with prominent effects on eating behavior. Studies of the orexigenic peptides neuropeptide Y and the opioid peptides have shown state-related abnormalities in patients with eating disorders. With respect to gut-related peptides, there appears to be substantial evidence for blunting in the meal-related release of the satiety promoting peptide cholecystokinin in BN. Fasting plasma levels of the orexigenic peptide ghrelin have been found to be elevated in patients with AN. As discussed in this review, additional studies will be needed to assess the role of nutritional and body weight changes in neuropeptide alterations observed in symptomatic eating disorder patients, and to identify stable trait-related abnormalities in neuropeptide regulation that persist in individuals who have recovered from an eating disorder.
An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at < 200 W/m2 irradiation; 0.99 power factor, 87% efficiency and 0.088 distortion factor for dc supplies; 1 ns synchronization resolution via Ethernet; database accelerators allowing 85% energy savings for servers; adaptive software yielding energy reduction of 73% for e-Commerce applications; processors and corresponding data links with 40% and 70% energy savings, respectively, by adaption of clock frequency and supply voltage in less than 20 ns; clock generator chip with tunable frequency from 83-666 MHz and 0.62-1.6 mW dc power; 90 Gb/s on-chip link over 6 mm and efficiency of 174 fJ/mm; dynamic biasing system doubling efficiency in power amplifiers; 60 GHz BiCMOS frontends with dc power to bandwidth ratio of 0.17 mW/MHz; driver assistance systems reducing energy consumption by 10% in cars
Systems of stochastic chemical kinetics are modeled as infinite level-dependent quasi-birth-and-death (LDQBD) processes. For these systems, in contrast to many other applications, levels have an increasing number of states as the level number increases and the probability mass may reside arbitrarily far away from lower levels. Ideas from Lyapunov theory are combined with existing matrix-analytic formulations to obtain accurate approximations to the stationary probability distribution when the infinite LDQBD process is ergodic. Results of numerical experiments on a set of problems are provided.