We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.
Recent developments in U.S-Cuba relations have resulted in a proliferating global interest in Cuba, including its legal regime. This comprehensive Guide aims to fill a noticeable void in the availability of information in English on this enigmatic jurisdiction's legal order, and on how to conduct research related to it. Covered topics include “The Constitution,” “Legislation and Codes,” “The Judiciary,” “Cuba in the International Arena,” and “The Legal Profession.” A detailed section on “Cuban Legal Materials in U.S. and Canadian Libraries” is also featured. Although the Guide emphasizes sources in English and English-language translation, materials in Spanish are likewise included as English-language equivalents are often unavailable. The Guide's 12 authors are members of the Latin American Law Interest Group of the American Association of Law Libraries’ Foreign, Comparative, and International Law Special Interest Section (FCIL-SIS).
The glucocorticoid receptor (GR) is a key receptor involved in inflammatory responses and is influenced by sex steroids. This study measured GR expression on circulating leukocyte subtypes in males and females.
Methods
A total of 23 healthy adults (12 female) participated in this study. GR expression was measured in leukocyte subtypes using flow cytometry. Peripheral blood mononuclear cell (PBMC) gene expression of GR (NR3C1), GR β, TGF-β1 and 2, and glucocorticoid-induced leucine zipper (GILZ) were determined by real-time polymerase chain reaction.
Results
Leukocyte GR was lower in females, particularly in granulocytes, natural killer cells, and peripheral blood mononuclear cells (p≤0.01). GR protein expression was different across leukocyte subtypes, with higher expression in eosinophils compared with granulocytes, T lymphocytes, and natural killer cells (p<0.05). There was higher gene expression of GR β in males (p=0.03).
Conclusions
This is the first study to identify sexual dimorphism in GR expression in healthy adults using flow cytometry. These results may begin to explain the sexual dimorphism seen in many diseases and sex differences in glucocorticoid responsiveness.
We describe preliminary results from our study of multi-scale structures in Centaurus A (NGC 5128) obtained using the Chandra X-ray Observatory HRC-I observations. The high-angular resolution Chandra images reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. The region surrounding the Cen A nucleus, believed to be associated with a supermassive black hole, shows structures on arcsecond scales clearly resolved from the central source.
To describe current Ebola treatment center (ETC) locations, their capacity to care for Ebola virus disease patients, and infection control infrastructure features.
DESIGN
A 19-question survey was distributed electronically in April 2015. Responses were collected via email by June 2015 and analyzed in an electronic spreadsheet.
SETTING
The survey was sent to and completed by site representatives of each ETC.
PARTICIPANTS
The survey was sent to all 55 ETCs; 47 (85%) responded.
RESULTS
Of the 47 responding ETCs, there are 84 isolation beds available for adults and 91 for children; of these pediatric beds, 35 (38%) are in children’s hospitals. In total, the simultaneous capacity of the 47 reporting ETCs is 121 beds. On the basis of the current US census, there are 0.38 beds per million population. Most ETCs have negative pressure isolation rooms, anterooms, and a process for category A waste sterilization, although only 11 facilities (23%) have the capability to sterilize infectious waste on site.
CONCLUSIONS
Facilities developed ETCs on the basis of Centers for Disease Control and Prevention guidance, but specific capabilities are not mandated at this present time. Owing to the complex and costly nature of Ebola virus disease treatment and variability in capabilities from facility to facility, in conjunction with the lack of regulations, nationwide capacity in specialized facilities is limited. Further assessments should determine whether ETCs can adapt to safely manage other highly infectious disease threats.
Infect. Control Hosp. Epidemiol. 2016;37(3):313–318
At the crossroad between nutrient supply and requirements, the liver plays a central role in partitioning nitrogenous nutrients among tissues. The present review examines the utilisation of amino acids (AA) within the liver in various physiopathological states in mammals and how the fates of AA are regulated. AA uptake by the liver is generally driven by the net portal appearance of AA. This coordination is lost when demands by peripheral tissues is important (rapid growth or lactation), or when certain metabolic pathways within the liver become a priority (synthesis of acute-phase proteins). Data obtained in various species have shown that oxidation of AA and export protein synthesis usually responds to nutrient supply. Gluconeogenesis from AA is less dependent on hepatic delivery and the nature of nutrients supplied, and hormones like insulin are involved in the regulatory processes. Gluconeogenesis is regulated by nutritional factors very differently between mammals (glucose absorbed from the diet is important in single-stomached animals, while in carnivores, glucose from endogenous origin is key). The underlying mechanisms explaining how the liver adapts its AA utilisation to the body requirements are complex. The highly adaptable hepatic metabolism must be capable to deal with the various nutritional/physiological challenges that mammals have to face to maintain homeostasis. Whereas the liver responds generally to nutritional parameters in various physiological states occurring throughout life, other complex signalling pathways at systemic and tissue level (hormones, cytokines, nutrients, etc.) are involved additionally in specific physiological/nutritional states to prioritise certain metabolic pathways (pathological states or when nutritional requirements are uncovered).
Renewable energy sources – including biomass, geothermal, ocean, solar, and wind energy, as well as hydropower – have a huge potential to provide energy services for the world. The renewable energy resource base is sufficient to meet several times the present world energy demand and potentially even 10 to 100 times this demand. This chapter includes an in-depth examination of technologies to convert these renewable energy sources to energy carriers that can be used to fulfill our energy needs, including their installed capacity, the amount of energy carriers they produced in 2009, the current state of market and technology development, their economic and financial feasibility in 2009 and in the near future, as well as major issues they may face relative to their sustainability or implementation.
Present uses of renewable energy
Since 1990 the energy provided from renewable sources worldwide has risen at an average rate of nearly 2% a year, but in recent years this rate has increased to about 5% annually (see Figure 11.1.) As a result, the global contribution of renewables has increased from about 74 EJ in 2005 to about 89 EJ in 2009 and represents now 17% of global primary energy supply (528 EJ, see Figure 11.2). Most of this renewable energy comes from the traditional use of biomass (about 39 EJ) and larger-scale hydropower (about 30 EJ), while other renewable technologies provided about 20 EJ.
Improvement of electric back contact formation is one of the major issues of the CdTe thin film solar cell research. Chemical etching of CdTe before metallization is accepted to improve contact formation. It is believed that a CdTe/Te contact is formed by this procedure leading to a Fermi level position in the CdTe close to the valence band maximum for low contact resistance. We have studied the electronic properties of chemically etched CdTe surfaces with photoelectron spectroscopy. Etching of the samples was performed in air (“ex-situ“) as well as in an electrochemical setup directly attached to the UHV system (“in-situ“). The formation of a Te layer is clearly shown by (S)XPS. In contrast to previous studies we could not detect the formation of a p-CdTe surface for different experimental conditions. The detected Fermi level position indicates still band bending and hence a blocking Schottky barrier.
In this paper the electronic properties of the different interfaces of CdTe thin film solar cells will be analysed by using a surface science approach. Experimental basis for the experiments is an integrated UHV systems which allows to prepare and analyse real solar cells as well as appropriate model interfaces. Recently obtained data on the ITO surface, the ITO/SnO2/CdS front contact, the CdS/CdTe heterojunction and the CdTe/Te back contact will be presented. In addition, bulk properties as doping and lateral inhomogeneities will be addressed. For all these interfaces experimentally determined band energy diagrams will be given and discussed in relation to solar cell performance. Finally, the sum of the results will be used to propose a modified band energy diagram of the complete CdTe thin film solar cell and its implication for further cell improvement will be presented.
Nanoindentation studies of thin metal films have provided insight into the mechanisms of plasticity in small volumes, showing a strong dependence on the film thickness and grain size. It has been previously shown that an increased dislocation density can be manifested as an increase in the hardness or flow resistance of a material, as described by the Taylor relation [1]. However, when the indentation is confined to very small displacements, the observation can be quite the opposite; an elevated dislocation density can provide an easy mechanism for plasticity at relatively small loads, as contrasted with observations of near-theoretical shear stresses required to initiate dislocation activity in low-dislocation density materials. Experimental observations of the evolution of hardness with displacement show initially soft behavior in small-grained films and initially hard behavior in large-grained films. Furthermore, the small-grained films show immediate hardening, while the large grained films show the ‘softening’ indentation size effect (ISE) associated with strain gradient plasticity. Rationale for such behavior has been based on the availability of dislocation sources at the grain boundary for initiating plasticity. Embedded atom method (EAM) simulations of the initial stages of indentation substantiate this theory; the indentation response varies as expected when the proximity of the indenter to a Σ79 grain boundary is varied.
Buried dislocation superlattices are obtained by bonding ultra-thin single crystal Si (001) films on Si (001) wafers. The twist of two Si wafers induces a regular square grid of dissociated screw dislocations and the tilt a 1-D array of mixed dislocation. The Burgers vector is a/2 <110> for both types of dislocation. The atomic displacements and deformations of pure screw and edge dislocations are calculated with an isotropic elasticity approximation taking into account the free surface and the thickness of the upper crystal. It is shown by these calculations that the elastic strain field propagates up to the surface, and quantitative arguments are given to choose the network period / film thickness ratio.
Recently a new microbeam bending technique utilizing triangular beams was introduced. For this geometry, the film on top of the beam deforms uniformly when the beams are deflected, unlike the standard rectangular geometry in which the bending is concentrated at the support. The yielding behavior of the film can be modeled using average stress-strain equations to predict the stress-strain relation for the film while attached to its substrate. This model has also been used to show that the gradint of stress and strain through the thickness of the film, which occurs during beam bending, does not obscure the measurement of the yield stress in our analysis.
Utilizing this technique, the yielding and strain hardening behavior of bare Cu thin films has been investigated. The Cu film was thermally cycled from room temperature to 500 °C, and from room temperature to –196°C. The film was tested after each cycle. The thermal cycles were performed to examine the effect of thermal processing on the stress-strain behavior of the film.
The mechanical properties of thin metal films have been investigated for many years. How- ever, the underlying mechanisms are still not fully understood. In this paper we give an overview of our work on thermomechanical properties and microstructure evolution in pure Cu and dilute Cu-Al alloy films. Very clean films were produced by sputtering and annealing under ultra-high vacuum (UHV) conditions. We described stress-temperature curves of pure Cu films with a constrained diffusional creep model from the literature. In Cu-1at.%Al alloy films, Al surface segregation and oxidation led to a “self-passivating” effect. These films showed an increased high- temperature strength because of the suppression of constrained diffusional creep; however, under certain annealing conditions, these films deteriorated due to void growth at grain boundaries.
Studies of the effect of different electrode combinations on the device characteristics of simple three layer light-emitting diodes (LEDs) prepared with poly(ρ-phenylenevinylene) (PPV) as the emissive layer sandwiched between two metal contacts have shown that it is generally more difficult to inject electrons than holes. In order to improve the efficiency of such devices it is, therefore, necessary to develop methods to enhance the injection of electrons and we illustrate here one example where we have successfully achieved this by the introduction of a further, electron transport, layer. The result is an eight fold increase in efficiency over our best three layer PPV devices. The efficiency is also dependent on the details of the polymer electronic structure and using a family of copolymers we have been able to produce enhancements in efficiency to values of up to 30 times that of the corresponding PPV devices. Variations in the polymer electronic structure also affect the colour of emission and the same family of copolymers allow control of emission colour from blue/green to orange/red. Supramolecular control of the copolymer electronic structure can be achieved by lithographic patterning and we show that it is possible to produce regions within a single polymer film that possess different π-π* energy gaps.
A brief review is given of models which propose a correlation between electromigration resistance and the mechanical strength of thin film interconnects. In an attempt to achieve metallurgical strengthening and improved electromigration resistance, aluminum films were implanted with oxygen ions. Preliminary electromigration tests on line arrays patterned from these films resulted in lifetimes comparable to the standard Al films. The lack of improvement is attributed to enhanced hillock/whisker growth during electromigration in the implanted interconnects. This behavior is coincident with a lower compressive strength in similarly treated continuous films at elevated temperatures as measured by the substrate curvature technique.
Dynamic properties of polymer surfaces affect their ability to withstand abrasive actions. Kinetic conditions, like velocity, penetration depth and shape of the abrasive particles, change the abrasion mechanisms and the morphology of the abraded surface. Using the scratch technique, along with profilometry measurement across the scratches, we have been able to completely characterize the residual scratch morphology. Pile-up deformation and visco-plastic relaxation are key phenomena that characterize the importance of ductility in the scratch resistance of polymer surfaces. Cross profilometry aids in studying the relaxation of the scratch morphology for different time and temperature history after the scratch is made. The effect of scratch velocity, penetration depth and indenter geometry on the contact pressure and friction coefficient estimated during a scratch test can also be analyzed. Following Eyring's law, a good correlation, was found between normal indentation and scratch testing in the evolution of the contact pressure with the applied strain rate. This work results in a better understanding of the stresses and the strains applied by an abrasive particle, and especially relates the dynamic mechanical properties of viscous materials, like stress exponent, to their scratch behavior. The method presented can provide for the measurement of dynamic properties of polymer surfaces or thin films under a very large range of strain rates.
Residual stresses in thin films play an important role in the mechanical behaviour of MEMS. In this paper we present a study of the stress and its relaxation for the PZT films, and associated electrodes, deposited on oxidized silicon substrates. The stresses were calculated from the bending plate method and the Stoney's equation. The radius of curvature were measured by optical profilometry before and after films deposition. The substrates (180 μm Si + 0.66 μm thermal SiO2) were coated with sputtered Ti (20 nm) and Pt (200 nm) used as bottom electrode. The global stress in the Ti/Pt layer was found compressive (−1.29 GPa) after deposition and tensile (465 MPa) after annealing (400°C, 30s, Ar). A 0.55 μm thick PZT layer was RF-magnetron sputtered and crystallized by a RTA (700°, 30s, Air). The as-deposited PZT films exhibited a little tensile stress of 43 MPa. After annealing, a tensile stress value of 363 MPa was found. Finally, we observed that the stress of the whole multilayer showed a decrease as a function of time. In order to explain this phenomenon, depth profile of each component of the PZT layer were obtained by Secondary Ion Mass Spectrometry (SIMS). This time-dependent stress relaxation was then correlated to a lead and oxygen migration across the PZT layer.
The internal oxidation method is applied for the first time to produce a fine dispersion of second phase particles in thin films. A processing route is presented which includes ultra-high vacuum magnetron sputtering of about 1 μm thick alloy films onto Si substrates followed by in situ annealing and oxidation. Two different Cu-base alloys are examined, Cu-Y and Cu-Al, in which the extent of miscibilitiy differs significantly. This has considerable influence on the grain growth behavior. Nanoindention and wafer-curvature experiments show a drastic improvement of both room-temperature and high-temperature strength. Phenomena well known from bulk oxide-dispersion strengthened (ODS) alloys are found to appear in the thin films as well: Results on abnormal grain growth and the formation of creep voids are presented and discussed in terms of particle effects.