We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation.
Global income inequality and energy consumption inequality are related. High-income households consume more energy than low-income ones, and for different purposes. Here, we explore the global household energy consumption implications of global income redistribution. We show that global income inequality shapes not only inequalities of energy consumption but the quantity and composition of overall energy demand. Our results call for the inclusion of income distribution into energy system models, as well as into energy and climate policy.
Technical summary
Despite a rapidly growing number of studies on the relationship between inequality and energy, there is little research estimating the effect of income redistribution on energy demand. We contribute to this debate by proposing a simple but granular and data-driven model of the global income distribution and of global household energy consumption. We isolate the effect of income distribution on household energy consumption and move beyond the assumption of aggregate income–energy elasticities. First, we model expenditure as a function of income. Second, we determine budget shares of expenditure for a variety of products and services by employing product-granular income elasticities of demand. Subsequently, we apply consumption-based final energy intensities to product and services to obtain energy footprint accounts. Testing variants of the global income distribution, we find that the ‘energy costs’ of equity are small. Equitable and inequitable distributions of income, however, entail distinct structural change in energy system terms. In an equitable world, fewer people live in energy poverty and more energy is consumed for subsistence and necessities, instead of luxury and transport.
Social media summary
Equality in global income shifts household energy footprints towards subsistence, while inequality shifts them towards transport and luxury.
Olfactory dysfunction represents one of the most frequent symptoms of coronavirus disease 2019, affecting about 70 per cent of patients. However, the pathogenesis of the olfactory dysfunction in coronavirus disease 2019 has not yet been elucidated.
Case report
This report presents the radiological and histopathological findings of a patient who presented with anosmia persisting for more than three months after infection with severe acute respiratory syndrome coronavirus-2.
Conclusion
The biopsy demonstrated significant disruption of the olfactory epithelium. This shifts the focus away from invasion of the olfactory bulb and encourages further studies of treatments targeted at the surface epithelium.
In order to maximize the utility of future studies of trilobite ontogeny, we propose a set of standard practices that relate to the collection, nomenclature, description, depiction, and interpretation of ontogenetic series inferred from articulated specimens belonging to individual species. In some cases, these suggestions may also apply to ontogenetic studies of other fossilized taxa.
We present a detailed analysis of the radio galaxy PKS
$2250{-}351$
, a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and IR data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS
$2250{-}351$
lies at
$z=0.2115$
in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, ‘red and dead’ elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-IR emission. Assuming it lies on the local M–
$\sigma$
relation, it has an Eddington accretion rate of
$\lambda_{\rm EDD}\sim 0.014$
. We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission (
${\sim} 300\,$
Myr), the accretion has switched from an inefficient advection-dominated mode to a thin disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS
$2250{-}351$
lying to the west of the densest concentration of galaxies in Abell 3936.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
OBJECTIVES/SPECIFIC AIMS: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects one in 68 children. Children with ASD have 2 core areas of difficulty: social communication skills and restricted and repetitive interests and patterns of behavior. Children with social skills deficits are at higher risk of developing mental health problems, and underdeveloped social skills predict poorer quality of life in adulthood. Therapies have been developed to help people with ASD improve social abilities in childhood, often involving a clinician directly teaching social skills lessons, either one-on-one or in a group setting. However, children with ASD can become anxious when interacting with other people and have an intrinsic motivation to interact with technology. To capitalize on this interest, this research team developed a robot, the socially animated machine (SAM) to teach social skills to children with ASD. Previous research found that this intervention was feasible and enjoyable for children with ASD and average cognitive ability, and participants improved in complex emotion recognition following intervention. The purpose of this study was to determine whether participants of all IQ levels were motivated by the SAM intervention, and whether they improved on emotion identification, facial recognition, social skills, and adaptive behavior. METHODS/STUDY POPULATION: This study recruited 20 children with ASD ages 5–14. Children completed tasks measuring ASD symptoms, IQ, receptive language, facial recognition, and emotion identification and were assigned to the control group (nonemotion dance games with SAM robot) or the intervention group (emotion games with SAM robot). Parents and teachers completed questionnaires about the child’s social skills. Following the robot intervention, facial recognition, emotion identification, and social skills were measured again, and parents and children rated participant enjoyment during the robot interaction. RESULTS/ANTICIPATED RESULTS: Overall, parents and children in both groups rated the robot interaction as highly enjoyable and motivating (parent ratings: M=26.4 out of 30, child ratings: M=17.5 out of 20). There were no differences between groups on post-test measures when controlling for pre-test scores (all p>0.05). Both groups improved over time on emotion identification accuracy (intervention: M=13.0% improvement, t=2.57, p<0.05; control: M=10.2% improvement, t=2.38, p<0.05) and parent-rated social skills (intervention: pre-test M=113.8, post-test M=100.6, t=−3.37, p=0.01; Control: pre-test M=107.9, post-test M=89.0, t=−2.83, p<0.05; decrease in scores indicates improvement). Teachers saw a decrease in problem behaviors for the intervention group (pre-test M=127.4, post-test M=119.6, t=−3.79, p<0.01, decrease in scores indicates improvement). DISCUSSION/SIGNIFICANCE OF IMPACT: This study shows that children with ASD and all levels of cognitive ability enjoyed and were motivated by the SAM robot intervention. This is particularly important for children with ASD who often have difficulty with attention and motivation. Children who are intrinsically motivated by the learning process will be more likely to benefit from it; therefore, continuing to pursue the methodology of robot-based interventions with this population is a worthwhile endeavor.
The Taipan galaxy survey (hereafter simply ‘Taipan’) is a multi-object spectroscopic survey starting in 2017 that will cover 2π steradians over the southern sky (δ ≲ 10°, |b| ≳ 10°), and obtain optical spectra for about two million galaxies out to z < 0.4. Taipan will use the newly refurbished 1.2-m UK Schmidt Telescope at Siding Spring Observatory with the new TAIPAN instrument, which includes an innovative ‘Starbugs’ positioning system capable of rapidly and simultaneously deploying up to 150 spectroscopic fibres (and up to 300 with a proposed upgrade) over the 6° diameter focal plane, and a purpose-built spectrograph operating in the range from 370 to 870 nm with resolving power R ≳ 2000. The main scientific goals of Taipan are (i) to measure the distance scale of the Universe (primarily governed by the local expansion rate, H0) to 1% precision, and the growth rate of structure to 5%; (ii) to make the most extensive map yet constructed of the total mass distribution and motions in the local Universe, using peculiar velocities based on improved Fundamental Plane distances, which will enable sensitive tests of gravitational physics; and (iii) to deliver a legacy sample of low-redshift galaxies as a unique laboratory for studying galaxy evolution as a function of dark matter halo and stellar mass and environment. The final survey, which will be completed within 5 yrs, will consist of a complete magnitude-limited sample (i ⩽ 17) of about 1.2 × 106 galaxies supplemented by an extension to higher redshifts and fainter magnitudes (i ⩽ 18.1) of a luminous red galaxy sample of about 0.8 × 106 galaxies. Observations and data processing will be carried out remotely and in a fully automated way, using a purpose-built automated ‘virtual observer’ software and an automated data reduction pipeline. The Taipan survey is deliberately designed to maximise its legacy value by complementing and enhancing current and planned surveys of the southern sky at wavelengths from the optical to the radio; it will become the primary redshift and optical spectroscopic reference catalogue for the local extragalactic Universe in the southern sky for the coming decade.
The local electrode atom probe (LEAP) has become the primary instrument used for atom probe tomography measurements. Recent advances in detector and laser design, together with updated hit detection algorithms, have been incorporated into the latest LEAP 5000 instrument, but the implications of these changes on measurements, particularly the size and chemistry of small clusters and elemental segregations, have not been explored. In this study, we compare data sets from a variety of materials with small-scale chemical heterogeneity using both a LEAP 3000 instrument with 37% detector efficiency and a 532-nm green laser and a new LEAP 5000 instrument with a manufacturer estimated increase to 52% detector efficiency, and a 355-nm ultraviolet laser. In general, it was found that the number of atoms within small clusters or surface segregation increased in the LEAP 5000, as would be expected by the reported increase in detector efficiency from the LEAP 3000 architecture, but subtle differences in chemistry were observed which are attributed to changes in the way multiple hit detection is calculated using the LEAP 5000.
The yields of spring barley during a medium-term (7 years) compost and slurry addition experiment and the soil carbon (C) and nitrogen (N) contents, bacterial community structure, soil microbial biomass and soil respiration rates have been determined to assess the effects of repeated, and in some cases very large, organic amendments on soil and crop parameters. For compost, total additions were equivalent to up to 119 t C/ha and 1·7 t N/ha and for slurry they were 25 t C/ha and 0·35 t N/ha over 7 years, which represented very large additions compared to control soil C and N contents (69 t C/ha and 0·3 t N/ha in the 0–30 cm soil depth). There was an initial positive response to compost and slurry addition on barley yield, but over the experiment the yield differential between the amounts of compost addition declined, indicating that repeated addition of compost at a lower rate over several years had the same cumulative effect as a large single compost application. By the end of the experiment it was clear that the addition of compost and slurry increased soil C and N contents, especially towards the top of the soil profile, as well as soil respiration rates. However, the increases in soil C and N contents were not proportional to the amount of C and N added, suggesting either that: (i) a portion of the added C and N was more vulnerable to loss; (ii) that its addition rendered another C or N pool in the soil more susceptible to loss; or (iii) that the C inputs from additional crop productivity did not increase in line with the organic amendments. Soil microbial biomass was depressed at the highest rate of organic amendment, and whilst this may have been due to genuine toxic or inhibitory effects of large amounts of compost, it could also be due to the inaccuracy of the substrate-induced respiration approach used for determining soil biomass when there is a large supply of organic matter. At the highest compost addition, the bacterial community structure was significantly altered, suggesting that the amendments significantly altered soil community dynamics.
Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. Details for each of these approaches are described.
The Evolutionary Map of the Universe (EMU) is a proposed radio continuum survey
of the Southern Hemisphere up to declination + 30°, with the Australian
Square Kilometre Array Pathfinder (ASKAP). EMU will use an automated source
identification and measurement approach that is demonstrably optimal, to
maximise the reliability and robustness of the resulting radio source
catalogues. As a step toward this goal we conducted a “Data
Challenge” to test a variety of source finders on simulated images. The
aim is to quantify the accuracy and limitations of existing automated source
finding and measurement approaches. The Challenge initiators also tested the
current ASKAPsoft source-finding tool to establish how it could benefit from
incorporating successful features of the other tools. As expected, most finders
show completeness around 100% at ≈ 10σ dropping to about 10% by
≈ 5σ. Reliability is typically close to 100% at ≈
10σ, with performance to lower sensitivities varying between finders. All
finders show the expected trade-off, where a high completeness at low
signal-to-noise gives a corresponding reduction in reliability, and vice versa.
We conclude with a series of recommendations for improving the performance of
the ASKAPsoft source-finding tool.
The aims of the study were to determine the prevalence of cardiometabolic risk factors and establish the proportion of people with psychosis meeting criteria for the metabolic syndrome (MetS). The study also aimed to identify the key lifestyle behaviours associated with increased risk of the MetS and to investigate whether the MetS is associated with illness severity and degree of functional impairment.
Method
Baseline data were collected as part of a large randomized controlled trial (IMPaCT RCT). The study took place within community mental health teams in five Mental Health NHS Trusts in urban and rural locations across England. A total of 450 randomly selected out-patients, aged 18–65 years, with an established psychotic illness were recruited. We ascertained the prevalence rates of cardiometabolic risk factors, illness severity and functional impairment and calculated rates of the MetS, using International Diabetes Federation (IDF) and National Cholesterol Education Program Third Adult Treatment Panel criteria.
Results
High rates of cardiometabolic risk factors were found. Nearly all women and most men had waist circumference exceeding the IDF threshold for central obesity. Half the sample was obese (body mass index ≥ 30 kg/m2) and a fifth met the criteria for type 2 diabetes mellitus. Females were more likely to be obese than males (61% v. 42%, p < 0.001). Of the 308 patients with complete laboratory measures, 57% (n = 175) met the IDF criteria for the MetS.
Conclusions
In the UK, the prevalence of cardiometabolic risk factors in individuals with psychotic illnesses is much higher than that observed in national general population studies as well as in most international studies of patients with psychosis.
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.