We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Do short stories cohere into a genre, different from other prose fiction, merely by virtue of their length, or, as some critics have argued, are there narrative and thematic differences that go beyond the question of how long they are? In this chapter, we turn to Digital Humanities methods to explore these questions in a corpus of around 10,000 short stories published in twentieth-century women’s magazines. As we analyze the deployment of characters, the narrative patterns, and the linguistic variety of the short stories in our corpus, we reveal the ways that these popular short stories trace a new history of short story writing. The constraints of “mere” length, our analysis shows, allow short fiction to develop a new kind of narrative, one different from that of the novel. Rather than simply a side-effect of the genre, the shortness of the short story is fundamental to understanding its narrative possibilities.
Sea-level science has seen many recent developments in observations and modelling of the different contributions and the total mean sea-level change. In this overview, we discuss (1) the evolution of the Intergovernmental Panel on Climate Change (IPCC) projections, (2) how the projections compare to observations and (3) the outlook for further improving projections. We start by discussing how the model projections of 21st century sea-level change have changed from the IPCC AR5 report (2013) to SROCC (2019) and AR6 (2021), highlighting similarities and differences in the methodologies and comparing the global mean and regional projections. This shows that there is good agreement in the median values, but also highlights some differences. In addition, we discuss how the different reports included high-end projections. We then show how the AR5 projections (from 2007 onwards) compare against the observations and find that they are highly consistent with each other. Finally, we discuss how to further improve sea-level projections using high-resolution ocean modelling and recent vertical land motion estimates.
We use a mathematical model to investigate the effect of basal topography and ice surface slope on transport and deposition of sediment within a water-filled subglacial channel. In our model, three zones of different behaviour occur. In the zone furthest upstream, variations in basal topography lead to sediment deposition under a wide range of conditions. In this first zone, even very small and gradually varying basal undulations (~5 m amplitude) can lead to the deposition of sediment within a modelled channel. Deposition is concentrated on the downstream gradient of subglacial ridges, and on the upstream gradient of subglacial troughs. The thickness and steepness of the ice sheet has a substantial impact on deposition rates, with shallow ice profiles strongly promoting both the magnitude and extent of sediment deposition. In a second zone, all sediment is transported downstream. Finally, a third zone close to the ice margin is characterised by high rates of sediment deposition. The existence of these zones has implications for esker formation and the dynamics of the subglacial environment.
A 14-year-old presents to the emergency department with pelvic pain, abdominal distention, and urinary retention. She began having vague abdominal discomfort and cramping several months ago. Recently, the symptoms are much more intense. Her mother reports a similar painful episode about three to four weeks ago, which improved after several days with rest and ibuprofen. They presented to the emergency department now because the patient was unable to void. The patient denies constipation, fever, nausea, vomiting, or sexual activity. She is healthy, taking no medications, and never had surgery. She experienced thelarche at age 10 years and has not yet begun menstruation.
Three related problems of viscoplastic flow around cylinders are considered. First, translating cylinders with no-slip surfaces appear to generate adjacent rotating plugs in the limit where the translation speed becomes vanishingly small. In this plastic limit, analytical results are available from plasticity theory (slipline theory) which indicate that no such plugs should exist. Using a combination of numerical computations and asymptotic analysis, we show that the plugs of the viscoplastic theory actually disappear in the plastic limit, albeit very slowly. Second, when the boundary condition on the cylinder is replaced by one that permits sliding, the plastic limit corresponds to a partially rough cylinder. In this case, no plasticity solution has been previously established; we provide evidence from numerical computations and slipline theory that a previously proposed upper bound (Martin & Randolph, Geotechnique, vol. 56, 2006, pp. 141–145) is actually the true plastic solution. Third, we consider how a prescribed surface velocity field can propel cylindrical squirmers through a viscoplastic fluid. We determine swimming speeds and contrast the results with those from the corresponding Newtonian problem.
We present the first general theory of glacier surging that includes both temperate and polythermal glacier surges, based on coupled mass and enthalpy budgets. Enthalpy (in the form of thermal energy and water) is gained at the glacier bed from geothermal heating plus frictional heating (expenditure of potential energy) as a consequence of ice flow. Enthalpy losses occur by conduction and loss of meltwater from the system. Because enthalpy directly impacts flow speeds, mass and enthalpy budgets must simultaneously balance if a glacier is to maintain a steady flow. If not, glaciers undergo out-of-phase mass and enthalpy cycles, manifest as quiescent and surge phases. We illustrate the theory using a lumped element model, which parameterizes key thermodynamic and hydrological processes, including surface-to-bed drainage and distributed and channelized drainage systems. Model output exhibits many of the observed characteristics of polythermal and temperate glacier surges, including the association of surging behaviour with particular combinations of climate (precipitation, temperature), geometry (length, slope) and bed properties (hydraulic conductivity). Enthalpy balance theory explains a broad spectrum of observed surging behaviour in a single framework, and offers an answer to the wider question of why the majority of glaciers do not surge.
The theory of slow viscous flow around a slender body is generalized to the situation where the ambient fluid has a yield stress. The local flow around a cylinder that is moving along or perpendicular to its axis, and rotating, provides a first step in this theory. Unlike for a Newtonian fluid, the nonlinearity associated with the viscoplastic constitutive law precludes one from linearly superposing solutions corresponding to each independent component of motion, and instead demands a full numerical approach to the problem. This is accomplished for the case of a Bingham fluid, along with a consideration of some asymptotic limits in which analytical progress is possible. Since the yield stress of the fluid strongly localizes the flow around the body, the leading-order slender-body approximation is rendered significantly more accurate than the equivalent Newtonian problem. The theory is applied to the sedimentation of inclined cylinders, bent rods and helices, and compared with some experimental data. Finally, the theory is applied to the locomotion of a cylindrical filament driven by helical waves through a viscoplastic fluid.
A yield stress is added to Taylor’s (Proc. R. Soc. Lond. A, vol. 209, 1951, pp. 447–461) model of a two-dimensional flexible sheet swimming through a viscous fluid. Both transverse waves along the sheet, as in Taylor’s original model, and longitudinal waves are considered as means of locomotion. In each case, numerical solutions are provided over a range of the two key parameters of the problem: the wave amplitude relative to the wavelength and a Bingham number which describes the strength of the yield stress. The numerical solutions are supplemented with discussions of various limits of the problem in which analytical progress is possible. When the yield stress is large, the swimming speed for low wave amplitude is exactly double that for a Newtonian fluid, for either type of wave.
In the limit of a large yield stress, or equivalently at the initiation of motion, viscoplastic flows can develop narrow boundary layers that provide either surfaces of failure between rigid plugs, the lubrication between a plugged flow and a wall or buffers for regions of predominantly plastic deformation. Oldroyd (Proc. Camb. Phil. Soc., vol. 43, 1947, pp. 383–395) presented the first theoretical discussion of these viscoplastic boundary layers, offering an asymptotic reduction of the governing equations and a discussion of some model flow problems. However, the complicated nonlinear form of Oldroyd’s boundary-layer equations has evidently precluded further discussion of them. In the current paper, we revisit Oldroyd’s viscoplastic boundary-layer analysis and his canonical examples of a jet-like intrusion and flow past a thin plate. We also consider flow down channels with either sudden expansions or wavy walls. In all these examples, we verify that viscoplastic boundary layers form as envisioned by Oldroyd. For each example, we extract the dependence of the boundary-layer thickness and flow profiles on the dimensionless yield-stress parameter (Bingham number). We find that, while Oldroyd’s boundary-layer theory applies to free viscoplastic shear layers, it does not apply when the boundary layer is adjacent to a wall, as has been observed previously for two-dimensional flow around circular obstructions. Instead, the boundary-layer thickness scales in a different fashion with the Bingham number, as suggested by classical solutions for plane-parallel flows, lubrication theory and, for flow around a plate, by Piau (J. Non-Newtonian Fluid Mech., vol. 102, 2002, pp. 193–218); we rationalize this second scaling and provide an alternative boundary-layer theory.
POST weed control in soybean in the United States is difficult because weed resistance to herbicides has become more prominent. Herbicide applicators have grown accustomed to low carrier volume rates that are typical with glyphosate applications. These low carrier volumes are efficient for glyphosate applications and allow applicators to treat a large number of hectares in a timely manner. Alternative modes of action can require greater carrier volumes to effectively control weeds. Glyphosate, glufosinate, lactofen, fluazifop-P, and 2,4-D were evaluated in field and greenhouse studies using 47, 70, 94, 140, 187, and 281 L ha−1 carrier volumes. Spray droplet size spectra for each herbicide and carrier volume combination were also measured and used to determine their impact on herbicide efficacy. Glyphosate efficacy was maximized using 70 to 94 L ha−1 carrier volumes using droplets classified as medium. Glufosinate efficacy was maximized at 140 L ha−1 and decreased as droplet diameter decreased. For 2,4-D applications, efficacy increased when using carrier volumes equal to or greater than 94 L ha−1. Lactofen was most responsive to changes in carrier volume and performed best when applied in carrier volumes of at least 187 L ha−1. Carrier volume had little impact on fluazifop-P efficacy in this study and efficacy decreased when used on taller plants. Based on these data, applicators should use greater carrier volumes when using contact herbicides in order to maximize herbicide efficacy.
The number of South American camelids (SACs) in England and Wales is increasing and with this comes a risk of new and emerging infections. Although classified as livestock, these animals are also treated as pets and may be in regular contact with humans. This paper reviews zoonotic diseases that have been identified in SACs in England and Wales, and which pose a potential risk to human health. We also highlight the importance of surveillance continuing to capture information on infections in SACs for the protection of both public and animal health.
Over 300 cases of acute toxoplasmosis are confirmed by reference testing in England and Wales annually. We conducted a case-control study to identify risk factors for Toxoplasma gondii infection to inform prevention strategies. Twenty-eight cases and 27 seronegative controls participated. We compared their food history and environmental exposures using logistic regression to calculate odds ratios (OR) and 95% confidence intervals in a model controlling for age and sex. Univariable analysis showed that the odds of eating beef (OR 10·7, P < 0·001), poultry (OR 6·4, P = 0·01) or lamb/mutton (OR 4·9, P = 0·01) was higher for cases than controls. After adjustment for potential confounders a strong association between beef and infection remained (OR 5·6, P = 0·01). The small sample size was a significant limitation and larger studies are needed to fully investigate potential risk factors. The study findings emphasize the need to ensure food is thoroughly cooked and handled hygienically, especially for those in vulnerable groups.
Ground-based observations of Jupiter’s decametric radio emission (DAM) have been reviewed by Ellis (1965), Warwick (1967, 1970) and Carr and Gulkis (1969). A startling feature of DAM is the modulating effect of Io, and interpretation of the Io effect has dominated theoretical discussions of DAM until quite recently, specifically until the fly-by s of Voyagers 1 and 2. The Voyager data showed that the DAM appears as nested arcs in the frequency-Jovian longitude plane (Warwick et al. 1979, Boischot et al. 1981). The interpretation of this arc structure has been of primary theoretical interest over the past two years. The most widely adopted explanation is that the emission from each point is confined to the surface of a hollow cone (Goldstein and Thieman 1981). This idea is not new: emission on the surface of a cone was discussed by Ellis and McCulloch (1963); Dulk (1967) derived detailed parameters for the cone (half angle 79° width 1°) from the occurrence pattern of DAM; and Goldreich and Lynden-Bell (1969) presented a theoretical interpretation of it. More recently Goldstein et al. (1979) used observational data on the Jovian magnetic field in deriving properties of the required emission cone. It seems that one requires the properties of the emission cone to vary with position in the Jovian magnetosphere to account for the nested arc pattern (Goldstein and Thieman 1981; Gurnett and Goertz 1981).
A theoretical study is presented of the flow of viscoplastic fluid through a Hele-Shaw cell that contains various kinds of obstructions. Circular and elliptical blockages of the cell are considered together with stepwise contractions or expansions in slot width, all within the simplifying approximation of a narrow gap. Specific attention is paid to the flow patterns that develop around the obstacles, particularly any stagnant plugged regions, and the asymptotic limits of relatively small or large yield stress. Periodic arrays of circular contractions or expansions are studied to explore the interference between obstructions. Finally, viscoplastic flow through a cell with randomly roughened walls is examined, and it is shown that constructive interference of local contractions and expansions leads to a pronounced channelization of the flow. An optimization algorithm based on minimization of the pressure drop is derived to construct the path of the channels in the limit of relatively large yield stress or, equivalently, relatively slow flow.
The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day−1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency interference detection strategy implemented for the Murchison Widefield Array, which is based on the aoflagger platform, and present 72–231 MHz radio-frequency interference statistics from 10 observing nights. Radio-frequency interference detection removes 1.1% of the data. Radio-frequency interference from digital TV is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After radio-frequency interference detection and excision, almost all data can be calibrated and imaged without further radio-frequency interference mitigation efforts, including observations within the FM and digital TV bands. The results are compared to a previously published Low-Frequency Array radio-frequency interference survey. The remote location of the Murchison Widefield Array results in a substantially cleaner radio-frequency interference environment compared to Low-Frequency Array’s radio environment, but adequate detection of radio-frequency interference is still required before data can be analysed. We include specific recommendations designed to make the Square Kilometre Array more robust to radio-frequency interference, including: the availability of sufficient computing power for radio-frequency interference detection; accounting for radio-frequency interference in the receiver design; a smooth band-pass response; and the capability of radio-frequency interference detection at high time and frequency resolution (second and kHz-scale respectively).
We present the results of an approximately 6 100 deg2 104–196 MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the MWACS. The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 h < RA < 8.5 h, − 58° < Dec < −14°over three frequency bands centred on 119, 150 and 180 MHz, with image resolutions of 6–3 arcmin. The catalogue has 3 arcmin angular resolution and a typical noise level of 40 mJy beam− 1, with reduced sensitivity near the field boundaries and bright sources. We describe the data reduction strategy, based upon mosaicked snapshots, flux density calibration, and source-finding method. We present a catalogue of flux density and spectral index measurements for 14 110 sources, extracted from the mosaic, 1 247 of which are sub-components of complexes of sources.