We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Banked human milk (BHM) has inherent infectious risks, even when pasteurized. Because of the ubiquity of Bacillus cereus in the environment and its ability to resist the Holder pasteurization process, there is a concern that BHM might lead to severe B. cereus infections.
Objective:
We reviewed observed and published cases to determine the potential causal role of BHM as the source of these infections.
Methods:
Two infants in the province of Québec (Canada) developed a B. cereus neonatal infection, and both had received BHM. We conducted bacteriological studies to compare clinical isolates and those found in these cases.
Results:
After extended culture of BHM retention lots, B. cereus was found to have been involved in batches related to the first case. However, molecular typing showed that the strain was different from the clinical isolate, therefore excluding BHM as the source of contamination. In the second case, a Brevibacillus spp was isolated, a species distinct from the clinical isolate.
Conclusion:
Based on these cases and others reported in the literature, a causal link between B. cereus contaminated BHM and preterm neonatal infection has never been documented. Therefore, the risk that BHM can cause this infection remains theoretical. Given the widespread presence of B. cereus in the hospital environment and its capacity to resist standard cleaning procedures, it seems likely that airborne or direct or indirect contact are the main sources of most, if not all, cases of severe B. cereus neonatal infections, even in babies exposed to BHM.
To determine the source of a Legionella pneumophila serogroup 5 nosocomial outbreak and the role of the heat exchanger installed on the hot water system within the previous year.
SETTING
A 400-bed tertiary care university hospital in Sherbrooke, Canada.
METHODS
Hot water samples were collected and cultured for L. pneumophila from 25 taps (baths and sinks) within wing A and 9 taps in wing B. Biofilm (5) and 2 L water samples (3) were collected within the heat exchangers for L. pneumophila culture and detection of protists. Sequence-based typing was performed on strain DNA extracts and pulsed-field gel electrophoresis patterns were analyzed.
RESULTS
Following 2 cases of hospital-acquired legionellosis, the hot water system investigation revealed a large proportion of L. pneumophila serogroup 5 positive taps (22/25 in wing A and 5/9 in wing B). High positivity was also detected in the heat exchanger of wing A in water samples (3/3) and swabs from the heat exchanger (4/5). The outbreak genotyping investigation identified the hot water system as the source of infections. Genotyping results revealed that all isolated environmental strains harbored the same related pulsed-field gel electrophoresis pattern and sequence-based type.
CONCLUSIONS
Two cases of hospital-acquired legionellosis occurred in the year following the installation of a heat exchanger to preheat hospital hot water. No cases were reported previously, although the same L. pneumophila strain was isolated from the hot water system in 1995. The heat exchanger promoted L. pneumophila growth and may have contributed to confirmed clinical cases.
To perform a post-outbreak prospective study of the Pseudomonas aeruginosa contamination at the faucets (water, aerator and drain) by culture and quantitative polymerase chain reaction (qPCR) and to assess environmental factors influencing occurrence
SETTING
A 450-bed pediatric university hospital in Montreal, Canada
METHODS
Water, aerator swab, and drain swab samples were collected from faucets and analyzed by culture and qPCR for the post-outbreak investigation. Water microbial and physicochemical parameters were measured, and a detailed characterization of the sink environmental and design parameters was performed.
RESULTS
The outbreak genotyping investigation identified drains and aerators as the source of infection. The implementation of corrective measures was effective, but post-outbreak sampling using qPCR revealed 50% positivity for P. aeruginosa remaining in the water compared with 7% by culture. P. aeruginosa was recovered in the water, the aerator, and the drain in 21% of sinks. Drain alignment vs the faucet and water microbial quality were significant factors associated with water positivity, whereas P. aeruginosa load in the water was an average of 2 log higher for faucets with a positive aerator.
CONCLUSIONS
P. aeruginosa contamination in various components of sink environments was still detected several years after the resolution of an outbreak in a pediatric university hospital. Although contamination is often not detectable in water samples by culture, P. aeruginosa is present and can recover its culturability under favorable conditions. The importance of having clear maintenance protocols for water systems, including the drainage components, is highlighted.
Infect. Control Hosp. Epidemiol. 2015;36(11):1283–1291
To compare Pseudomonas aeruginosa prevalence in electronic and manual faucets and assess the influence of connecting pipes and water quality.
SETTING
Faucets in 4 healthcare centers in Quebec, Canada.
METHODS
Water samples from 105 electronic, 90 manual, and 14 foot-operated faucets were analyzed for P. aeruginosa by culture and enzymatic detection, and swab samples from drains and aerators were analyzed by culture. Copper and residual chlorine concentrations, temperature, and flow rate were measured. P. aeruginosa concentrations were analyzed in 4 consecutive volumes of cold water and a laboratory study was conducted on copper pipes and flexible hoses.
RESULTS
P. aeruginosa contamination was found in drains more frequently (51%) than in aerators (1%) or water (culture: 4%, enzyme detection: 16%). Prevalence in water samples was comparable between manual (14%) and 2 types of electronic faucets (16%) while higher for foot-operated faucets (29%). However, type 2 electronic faucets were more often contaminated (31%) than type 1 (14%), suggesting that faucet architecture and mitigated volume (30 mL vs 10 mL) influence P. aeruginosa growth. Concentrations were 100 times higher in the first 250 mL than after flushing. Flexible hoses were more favorable to P. aeruginosa growth than copper and a temperature of 40°C led to higher counts.
CONCLUSIONS
The types of faucets and connecting pipes, flow rate, and water quality are important parameters influencing the prevalence and the concentrations of P. aeruginosa in faucets. High concentrations of P. aeruginosa in the first 250 mL suggest increased risk of exposure when using the first flush.
Infect Control Hosp Epidemiol 2014;00(0): 1–9
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.