We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cylindrical vesicle and cell membranes under tension can undergo a Rayleigh–Plateau instability leading to break-up. In Part 1 (Graessel et al., J. Fluid Mech., vol. xxx, 2021, Ax) we showed that anisotropic tension, created by active biological processes underneath the cell membrane, can significantly influence this process for a liquid–liquid interface. Here, we study the combined influence of anisotropic tension and membrane elasticity on the Rayleigh–Plateau instability. We analytically derive the dispersion relation for an interface endowed with bending and/or shear elasticity considering explicitly the dynamics of the suspending fluid. We find that the combination of bending elasticity and tension anisotropy leads to three qualitatively different regimes for the Rayleigh–Plateau scenario: (i) the classical regime in which short wavelengths are stable and long wavelengths are unstable, (ii) the suppressed regime in which the system is stable against all perturbation wavelengths and (iii) the restricted regime, in which a stable region at short and another one at long wavelengths are separated by a range of unstable modes centred around the dimensionless wavenumber $kR_0=1$. The width of this unstable range as well as the dominant wavelength of the instability depend on the bending modulus and tension anisotropy. For shear elasticity and area dilatation, on the other hand, only the classical and the suppressed regimes are observed, with the transition between them being independent of the tension anisotropy.
Numerous experiments and theoretical calculations have shown that cylindrical vesicles can undergo a pearling instability similar to the Rayleigh–Plateau instability of a liquid jet when they are subjected to external tension. In a living cell, a Rayleigh–Plateau-like instability could be triggered by internal tension generated in the cell cortex. This mechanism has been suggested to play an essential role in biological processes such as cell morphogenesis. In contrast to the simple, passive and isotropic membrane of vesicles, the cortical tensions generated by biological cells are often strongly anisotropic. Here, we theoretically investigate how this anisotropy affects the Rayleigh–Plateau instability mechanism. We do so in the limit of both low and high Reynolds numbers and accordingly cover cell behaviour under anisotropic cortical tension as well as fast liquid jets with anisotropic surface tension. Combining analytical linear stability analysis with numerical simulations we report a strong influence of the anisotropy on the dominant wavelength of the instability: increasing azimuthal with respect to axial tension leads to destabilisation and to a shorter break-up wavelength. In addition, compared to the classical isotropic Rayleigh–Plateau situation, the range of unstable modes grows or shrinks when the azimuthal tension is higher or lower than the axial tension, respectively. We explore nonlinear effects like an altered break-up time and formation of satellite droplets under anisotropic tension. In Part 2 (Bächer et al. J. Fluid Mech., vol. xxx, 2021, Ax) of this series we continue our analysis by analytically investigating the influence of bending and shear elasticity, usually present in vesicles and cells, on this anisotropic Rayleigh–Plateau instability.
An early evaluation of a product along with the consideration of life phase specific actor(s) and environment(s) can help greatly to gain an understanding of the product's behaviour and interactions. Virtual Reality (VR) can help designers to examine later life situations of a product by means of use case scenarios. However, preparing a VR-scene is still a time-consuming and cumbersome task. A model based approach that uses behaviour models of SysML to describe a VR-scene can reduce the preparation efforts. Such an approach is helpful if it allows the reuse of already described VR-scenes or their contents. This paper talks about the reusability of SysML behaviour models that constitute a VR-scene. This reusability can only be achieved by the generic definition of model interfaces. Therefore, a new modelling approach is presented to facilitate the reuse of SysML behaviour models to form different use cases of a product in VR. This approach also talks about the interface definitions and the management of variants of SysML models. The presented approach is elaborated by an example model that contains variants and uses instances to build different use cases.
Low and middle-income countries (LMICs) bear a disproportionately high burden of sepsis, contributing to an estimated 90% of global sepsis-related deaths. Critical care capabilities needed for septic patients, such as continuous vital sign monitoring, are often unavailable in LMICs.
Aim:
This study aimed to assess the feasibility and accuracy of using a small wireless, wearable biosensor device linked to a smartphone, and a cloud analytics platform for continuous vital sign monitoring in emergency department (ED) patients with suspected sepsis in Rwanda.
Methods:
This was a prospective observational study of adult and pediatric patients (≥ 2 months) with suspected sepsis presenting to Kigali University Teaching Hospital ED. Biosensor devices were applied to patients’ chest walls and continuously recorded vital signs (including heart rate and respiratory rate) for the duration of their ED course. These vital signs were compared to intermittent, manually-collected vital signs performed by a research nurse every 6-8 hours. Pearson’s correlation coefficients were calculated over the study population to determine the correlation between the vital signs obtained from the biosensor device and those collected manually.
Results:
42 patients (20 adults, 22 children) were enrolled. Mean duration of monitoring with the biosensor device was 34.4 hours. Biosensor and manual vital signs were strongly correlated for heart rate (r=0.87, p<0.001) and respiratory rate (r=0.74 p<0.001). Feasibility issues occurred in 9/42 (21%) patients, although were minor and included biosensor falling off (4.8%), technical/connectivity problems (7.1%), removal by a physician (2.4%), removal for a procedure (2.4%), and patient/parent desire to remove the device (4.8%).
Discussion:
Wearable biosensor devices can be feasibly implemented and provide accurate continuous vital sign measurements in critically ill pediatric and adult patients with suspected sepsis in a resource-limited setting. Further prospective studies evaluating the impact of biosensor devices on improving clinical outcomes for septic patients are needed.
Increased neural error-signals have been observed in obsessive-compulsive disorder (OCD), anxiety disorders, and inconsistently in depression. Reduced neural error-signals have been observed in substance use disorders (SUD). Thus, alterations in error-monitoring are proposed as a transdiagnostic endophenotype. To strengthen this notion, data from unaffected individuals with a family history for the respective disorders are needed.
Methods
The error-related negativity (ERN) as a neural indicator of error-monitoring was measured during a flanker task from 117 OCD patients, 50 unaffected first-degree relatives of OCD patients, and 130 healthy comparison participants. Family history information indicated, that 76 healthy controls were free of a family history for psychopathology, whereas the remaining had first-degree relatives with depression (n = 28), anxiety (n = 27), and/or SUD (n = 27).
Results
Increased ERN amplitudes were found in OCD patients and unaffected first-degree relatives of OCD patients. In addition, unaffected first-degree relatives of individuals with anxiety disorders were also characterized by increased ERN amplitudes, whereas relatives of individuals with SUD showed reduced amplitudes.
Conclusions
Alterations in neural error-signals in unaffected first-degree relatives with a family history of OCD, anxiety, or SUD support the utility of the ERN as a transdiagnostic endophenotype. Reduced neural error-signals may indicate vulnerability for under-controlled behavior and risk for substance use, whereas a harm- or error-avoidant response style and vulnerability for OCD and anxiety appears to be associated with increased ERN. This adds to findings suggesting a common neurobiological substrate across psychiatric disorders involving the anterior cingulate cortex and deficits in cognitive control.
To determine whether probiotic prophylaxes reduce the odds of Clostridium difficile infection (CDI) in adults and children.
DESIGN
Individual participant data (IPD) meta-analysis of randomized controlled trials (RCTs), adjusting for risk factors.
METHODS
We searched 6 databases and 11 grey literature sources from inception to April 2016. We identified 32 RCTs (n=8,713); among them, 18 RCTs provided IPD (n=6,851 participants) comparing probiotic prophylaxis to placebo or no treatment (standard care). One reviewer prepared the IPD, and 2 reviewers extracted data, rated study quality, and graded evidence quality.
RESULTS
Probiotics reduced CDI odds in the unadjusted model (n=6,645; odds ratio [OR] 0.37; 95% confidence interval [CI], 0.25–0.55) and the adjusted model (n=5,074; OR, 0.35; 95% CI, 0.23–0.55). Using 2 or more antibiotics increased the odds of CDI (OR, 2.20; 95% CI, 1.11–4.37), whereas age, sex, hospitalization status, and high-risk antibiotic exposure did not. Adjusted subgroup analyses suggested that, compared to no probiotics, multispecies probiotics were more beneficial than single-species probiotics, as was using probiotics in clinical settings where the CDI risk is ≥5%. Of 18 studies, 14 reported adverse events. In 11 of these 14 studies, the adverse events were retained in the adjusted model. Odds for serious adverse events were similar for both groups in the unadjusted analyses (n=4,990; OR, 1.06; 95% CI, 0.89–1.26) and adjusted analyses (n=4,718; OR, 1.06; 95% CI, 0.89–1.28). Missing outcome data for CDI ranged from 0% to 25.8%. Our analyses were robust to a sensitivity analysis for missingness.
CONCLUSIONS
Moderate quality (ie, certainty) evidence suggests that probiotic prophylaxis may be a useful and safe CDI prevention strategy, particularly among participants taking 2 or more antibiotics and in hospital settings where the risk of CDI is ≥5%.
Cognitive models of obsessive–compulsive disorder (OCD) posit dysfunctional appraisal of disorder-relevant stimuli in patients, suggesting disturbances in the processes relying on amygdala–prefrontal connectivity. Recent neuroanatomical models add to the traditional view of dysfunction in corticostriatal circuits by proposing alterations in an affective circuit including amygdala–prefrontal connections. However, abnormalities in amygdala–prefrontal coupling during symptom provocation, and particularly during conditions that require stimulus appraisal, remain to be demonstrated directly.
Methods
Amygdala–prefrontal connectivity was examined in unmedicated OCD patients during appraisal (v. distraction) of symptom-provoking stimuli compared with an emotional control condition. Subsequent analyses tested whether hypothesized connectivity alterations could be also identified during passive viewing and the resting state in two independent samples.
Results
During symptom provocation, reductions in positive coupling between amygdala and orbitofrontal cortex were observed in OCD patients relative to healthy control participants during appraisal and passive viewing of OCD-relevant stimuli, whereas abnormally high amygdala–ventromedial prefrontal cortex coupling was found when appraisal was distracted by a secondary task. In contrast, there were no group differences in amygdala connectivity at rest.
Conclusions
Our finding of abnormal amygdala–prefrontal connectivity during appraisal of symptom-related (relative to generally aversive) stimuli is consistent with the involvement of affective circuits in the functional neuroanatomy of OCD. Aberrant connectivity can be assumed to impact stimulus appraisal and emotion regulation, but might also relate to fear extinction deficits, which have recently been described in OCD. Taken together, we propose to integrate abnormalities in amygdala–prefrontal coupling in affective models of OCD.
Using kerf-free wafering technologies material losses in semiconductor manufacturing processes can be reduced drastically. By the use of externally applied stress, crystalline materials can be separated along crystal planes with clearly defined thickness. Nevertheless, during this process striations caused by the crack propagation occur. These crack growth features are river and Wallner lines. In this work, we demonstrate a process for spalling that scales favorably for large-area semiconductor substrates with a diameter up to 300 mm. To get rid of the crack growth features, a laser-conditioning process with a high numerical aperture at photon energies below the material bandgap energy, using multi-photon effects is utilized. The process affords a surface roughness Ra after spalling of <1 µm.
This paper presents performances achieved with InAlGaN/GaN HEMTs with 0.15 µm gate length on SiC substrate. Technology Computer Aided Design simulations were used to optimize the heterostructure. Special attention was paid to the design of the buffer structure. I-V measurements with DC and pulsed bias voltages were performed. CW measurements at millimeter waves were also carried out and are detailed in the following sections. The technology, optimized for power applications up to 45 GHz, demonstrates a current gain cut-off frequency FT of 70 GHz and a maximum available gain cut-off frequency FMAG of 140 GHz. CW Load-pull power measurements at 30 GHz enable to achieve a maximum PAE of 41% associated with an output power density of 3.5 W/mm when biased at VDS = 20 V. These devices, with an improved buffer structure show, reduced recovery time in pulsed operating conditions. These improved characteristics should have a positive impact for pulsed or modulated signal applications.
FFQ, food diaries and 24 h recall methods represent the most commonly used dietary assessment tools in human studies on nutrition and health, but food intake biomarkers are assumed to provide a more objective reflection of intake. Unfortunately, very few of these biomarkers are sufficiently validated. This review provides an overview of food intake biomarker research and highlights present research efforts of the Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ (JPI-HDHL) Food Biomarkers Alliance (FoodBAll). In order to identify novel food intake biomarkers, the focus is on new food metabolomics techniques that allow the quantification of up to thousands of metabolites simultaneously, which may be applied in intervention and observational studies. As biomarkers are often influenced by various other factors than the food under investigation, FoodBAll developed a food intake biomarker quality and validity score aiming to assist the systematic evaluation of novel biomarkers. Moreover, to evaluate the applicability of nutritional biomarkers, studies are presently also focusing on associations between food intake biomarkers and diet-related disease risk. In order to be successful in these metabolomics studies, knowledge about available electronic metabolomics resources is necessary and further developments of these resources are essential. Ultimately, present efforts in this research area aim to advance quality control of traditional dietary assessment methods, advance compliance evaluation in nutritional intervention studies, and increase the significance of observational studies by investigating associations between nutrition and health.
We present first results of a new heterodyne spectrometer dedicated to high-resolution spectroscopy of molecules of astrophysical importance. The spectrometer, based on a room-temperature heterodyne receiver, is sensitive to frequencies between 75 and 110 GHz with an instantaneous bandwidth of currently 2.5 GHz in a single sideband. The system performance, in particular the sensitivity and stability, is evaluated. Proof of concept of this spectrometer is demonstrated by recording the emission spectrum of methyl cyanide, CH3CN. Compared to state-of-the-art radio telescope receivers the instrument is less sensitive by about one order of magnitude. Nevertheless, the capability for absolute intensity measurements can be exploited in various experiments, in particular for the interpretation of the ever richer spectra in the ALMA era. The ease of operation at room-temperature allows for long time integration, the fast response time for integration in chirped pulse instruments or for recording time dependent signals. Future prospects as well as limitations of the receiver for the spectroscopy of complex organic molecules (COMs) are discussed.
In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.
Unemployment insurance policies are multidimensional objects, with variable waiting periods, eligibility duration, benefit levels, and asset tests, making intertemporal or international comparisons very difficult. Furthermore, labor market conditions, such as the likelihood and duration of unemployment, matter when assessing the generosity of different policies. In this article, we develop a new methodology to measure the generosity of unemployment insurance programs with a single metric. We build a first model with all characteristics of the complex unemployment insurance policy. Our model features heterogeneous agents that are liquidity constrained but can self-insure. We then build a second model, similar in all aspects but one: the unemployment insurance policy is one-dimensional (no waiting periods, eligibility limits, or asset tests, but constant benefits). We then determine which level of benefits in this second model makes society indifferent between both policies. We apply this measurement strategy to the unemployment insurance program of the United Kingdom.
Solubilizing alkyl chains play a crucial role in the design of semiconducting polymers because they define the materials solubility and processability as well as both the crystallinity and solid-state microstructure. In this paper, we present a scarcely explored design approach by attaching the alkyl side chains on one side (cis-) or on both sides (trans-) of the conjugated backbone. We further investigate the effects of this structural modification on the solid-state properties of the polymers and on the charge-carrier mobilities in organic thin-film transistors.
This paper presents an original characterization method of trapping phenomena in gallium nitride high electron mobility transistors (GaN HEMTs). This method is based on the frequency dispersion of the output-admittance that is characterized by low-frequency S-parameter measurements. As microwave performances of GaN HEMTs are significantly affected by trapping effects, trap characterization is essential for this power technology. The proposed measurement setup and the trap characterization method allow us to determine the activation energy Ea and the capture cross-section σn of the identified traps. Three original characterizations are presented here to investigate the particular effects of bias, ageing, and light, respectively. These measurements are illustrated through different technologies such as AlGaN/GaN and InAlN/GaN HEMTs with non-intentionally doped or carbon doped GaN buffer layers. The extracted trap signatures are intended to provide an efficient feedback to the technology developments