We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report on a method based on cross-sectional scanning photoelectron microscopy and spectroscopy (XSPEM/S) for studying electronic structure of III-nitride surfaces and interfaces on a submicrometer scale. Cross-sectional III-nitride surfaces prepared by in situ cleavage were investigated to eliminate the polarization effects associated with the interface charges/dipoles normal to the cleaved surface. In contrast to the as-grown polar surfaces which show strong surface band bending, the cleaved nonpolar surfaces have been found to be under the flat-band conditions. Therefore, both doping and compositional junctions can be directly visualized at the cleaved nonpolar surfaces. Additionally, we show that the “intrinsic” valence band offsets at the cleaved III-nitride heterojunctions can be unambiguously determined.
The interfacial regimes of cobalt/pentacene/cobalt (Co/Pc/Co) trilayers were emulated through the ultrathin pentacene/cobalt (Pc/Co) and cobalt/pentacene (Co/Pc) bilayers. Employing the magneto-optical Kerr effect (MOKE) measurement, we found the coercivity of Co bottom film in a thickness of 3.4 nm experienced a slight reduction upon the adsorption of Pc molecules. For the bilayers prepared with reversed order of deposition, the Co film deposited on a 6.4 nm Pc layer showed no observable ferromagnetic order at room temperature until its thickness reached 3 nm. After the onset of magnetic order, the x-ray images acquired on Pc/Co revealed a complicated magnetization patterns comparing to those observed on Co/Pc bilayers. Because the spin-polarized carriers will interact with the environment along their transport path, the presence of a non-magnetic layer and the occurrence of complicated domain structures suggested the spin-polarized carriers would experience a greater disturbance on their spin coherence when crossing the Pc/Co interface.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.