We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
Universal masking for healthcare workers and patients in hospitals was adopted to combat coronavirus disease 2019 (COVID-19), with compliance rates of 100% and 75.9%, respectively. Zero rates of nosocomial influenza A, influenza B, and respiratory syncytial virus infection were achieved from February to April 2020, which was significantly lower than the corresponding months in 2017–2019.
The role of severe respiratory coronavirus virus 2 (SARS-CoV-2)–laden aerosols in the transmission of coronavirus disease 2019 (COVID-19) remains uncertain. Discordant findings of SARS-CoV-2 RNA in air samples were noted in early reports.
Methods:
Sampling of air close to 6 asymptomatic and symptomatic COVID-19 patients with and without surgical masks was performed with sampling devices using sterile gelatin filters. Frequently touched environmental surfaces near 21 patients were swabbed before daily environmental disinfection. The correlation between the viral loads of patients’ clinical samples and environmental samples was analyzed.
Results:
All air samples were negative for SARS-CoV-2 RNA in the 6 patients singly isolated inside airborne infection isolation rooms (AIIRs) with 12 air changes per hour. Of 377 environmental samples near 21 patients, 19 (5.0%) were positive by reverse-transcription polymerase chain reaction (RT-PCR) assay, with a median viral load of 9.2 × 102 copies/mL (range, 1.1 × 102 to 9.4 × 104 copies/mL). The contamination rate was highest on patients’ mobile phones (6 of 77, 7.8%), followed by bed rails (4 of 74, 5.4%) and toilet door handles (4 of 76, 5.3%). We detected a significant correlation between viral load ranges in clinical samples and positivity rate of environmental samples (P < .001).
Conclusion:
SARS-CoV-2 RNA was not detectable by air samplers, which suggests that the airborne route is not the predominant mode of transmission of SARS-CoV-2. Wearing a surgical mask, appropriate hand hygiene, and thorough environmental disinfection are sufficient infection control measures for COVID-19 patients isolated singly in AIIRs. However, this conclusion may not apply during aerosol-generating procedures or in cohort wards with large numbers of COVID-19 patients.
The relationship between the subtypes of psychotic experiences (PEs) and common mental health symptoms remains unclear. The current study aims to establish the 12-month prevalence of PEs in a representative sample of community-dwelling Chinese population in Hong Kong and explore the relationship of types of PEs and common mental health symptoms.
Method
This is a population-based two-phase household survey of Chinese population in Hong Kong aged 16–75 (N = 5719) conducted between 2010 and 2013 and a 2-year follow-up study of PEs positive subjects (N = 152). PEs were measured with Psychosis Screening Questionnaire (PSQ) and subjects who endorsed any item on the PSQ without a clinical diagnosis of psychotic disorder were considered as PE-positive. Types of PEs were characterized using a number of PEs (single v. multiple) and latent class analysis. All PE-positive subjects were assessed with common mental health symptoms and suicidal ideations at baseline and 2-year follow-up. PE status was also assessed at 2-year follow-up.
Results
The 12-month prevalence of PEs in Hong Kong was 2.7% with 21.1% had multiple PEs. Three latent classes of PEs were identified: hallucination, paranoia and mixed. Multiple PEs and hallucination latent class of PEs were associated with higher levels of common mental health symptoms. PE persistent rate at 2-year follow-up was 15.1%. Multiple PEs was associated with poorer mental health at 2-year follow-up.
Conclusions
Results highlighted the transient and heterogeneous nature of PEs, and that multiple PEs and hallucination subtype of PEs may be specific indices of poorer common mental health.
Maternal supraphysiological estradiol (E2) environment during pregnancy leads to adverse perinatal outcomes. However, the influence of oocyte exposure to high E2 levels on perinatal outcomes remains unknown. Thus, a retrospective cohort study was conducted to explore the effect of high E2 level induced by controlled ovarian stimulation (COH) on further outcomes after frozen embryo transfer (FET). The study included all FET cycles (n = 10,581) between 2014 and 2017. All cycles were categorized into three groups according to the E2 level on the day of the human Chorionic Gonadotropin trigger. Odds ratios (ORs) and their confidence intervals (CIs) were calculated to evaluate the association between E2 level during COH and pregnancy outcomes and subsequent neonatal outcomes. From our findings, higher E2 level was associated with lower percentage of chemical pregnancy, clinical pregnancy, ongoing pregnancy, and live birth as well as increased frequency of early miscarriage. Preterm births were more common among singletons in women with higher E2 level during COH (aOR1 = 1.93, 95% CI: 1.22–3.06; aOR2 = 2.05, 95% CI: 1.33–3.06). Incidence of small for gestational age (SGA) was more common in both singletons (aOR1 = 2.01, 95% CI: 1.30–3.11; aOR2 = 2.51, 95% CI: 1.69–3.74) and multiples (aOR1 = 1.58, 95% CI: 1.03–2.45; aOR2 = 1.99, 95% CI: 1.05–3.84) among women with relatively higher E2 level. No association was found between high E2 level during COH and the percentage of macrosomia or large for gestational age. In summary, oocyte exposure to high E2 level during COH should be brought to our attention, since the pregnancy rate decreasing and the risk of preterm birth and SGA increasing following FET.
We investigated attitudes toward 10 specific groups of individuals with disabilities among students in college settings. These groups comprised major depression, substance use disorder (SUD), anxiety disorder, autism spectrum disorder (ASD), cerebral palsy, hearing impairment, learning disability, visual impairment, spinal cord injury, and cancer survivor. The multidimensional scaling (MDS) analysis revealed a two-dimension space representing participants’ attitudes toward those disabilities. The MDS biplot further indicated higher levels of perceived dangerousness from the groups with SUD, major depression, anxiety disorder, and ASD. The hierarchical cluster analysis revealed that cluster A (SUD and major depression) was rated as having the highest level of social distance (i.e., negative attitudes). The implications for research and practice in rehabilitation counseling were discussed.
An in-house self-held respiration monitoring device (SHRMD) was developed for providing deep inspiration breath hold (DIBH) radiotherapy. The use of SHRMD is evaluated in terms of reproducibility, stability and heart dose reduction.
Methods and materials:
Sixteen patients receiving radiotherapy of left breast cancer were planned for treatment with both a free breathing (FB) scan and a DIBH scan. Both FB and DIBH plans were generated for comparison of the heart, left anterior descending (LAD) artery and lung dose. All patients received their treatments with DIBH using SHRMD. Megavoltage cine images were acquired during treatments for evaluating the reproducibility and stability of treatment position using SHRMD.
Results:
Compared with FB plans, the maximum dose to the heart by DIBH technique with SHRMD was reduced by 29·9 ± 15·6%; and the maximum dose of the LAD artery was reduced by 41·6 ± 18·3%. The inter-fractional overall mean error was 0·01 cm and the intra-fractional overall mean error was 0·04 cm.
Conclusion:
This study demonstrated the potential benefits of using the SHRMD for DIBH to reduce the heart and LAD dose. The patients were able to perform stable and reproducible DIBHs.
To simulate the effects of hot working parameters on microstructure and flow resistance during dynamic recrystallization (DRX) of a Ni–Cr–Mo-based C276 superalloy, a 2D mesoscopic model has been established using cellular automaton (CA) method. The isothermal hot compression tests were performed on a Gleeble 1500 thermal-mechanical simulator at the temperature range of 1273–1473 K and strain rate range of 0.001–5 s−1. The flow stress behaviors were then obtained and the microstructures of quenching specimen were observed after compression. Then the dislocation density evolution, nucleation and grain growth during hot compression were determined from experiments and integrated to the CA model. The topology of microstructure evolution and deformation resistance were calculated using the developed CA model and compared with the experimental ones. The CA simulation results show reasonable agreements with the experiments, implying the developed CA can capture the effects of processing parameters on the DRX behavior of C276 superalloy.
To analyze the current development of HTA in China and to identify areas for improvement, we mapped the level of HTA development in China and compared it with the level of HTA development in ten other countries using a survey instrument.
Methods
We launched a nationwide survey targeting different stakeholders. For this purpose, we used a validated instrument that enables mapping HTA development in a country using eight domains. The views of the respondents regarding the overall level of HTA development and for each domain were compared with the results of a mapping study that included ten countries.
Results
In total, we received 222 responses, 33 from policy-makers, 158 from researchers, and 31 from industry, as well as health provider representatives including 8 from hospitals, centers for disease control and prevention. We calculated the mean score for the level of HTA development. The overall HTA development for China was scored at 76.4 (out of a maximum of 146). Although the total score for China was comparable to the mean score of 75.6 among the ten countries, China scored significantly lower than the mean score of 117.0 among the three developed countries. In addition, China scored significantly lower in the domain of institutionalization compared to the other ten countries.
Conclusions
China needs to tackle the issue of low HTA institutionalization to strengthen the foundation of HTA development. Future government initiatives that institutionalize HTA, for example, establishing a national HTA system or consortium, will improve the development of HTA in China.
China, which was once a world champion in invention, has failed to maintain its global leadership in innovation after the middle of the Ming Dynasty (1368–1644). Today, frame-breaking innovations are more likely to originate from European and North American countries than from China. In the perspective article (Augier, Guo, & Rowen, 2016), the authors attribute this phenomenon, which is often referred to as the Needham Puzzle, to three reasons: (1) the Chinese did not develop a scientific method like that in the West; (2) lack of educational diversity and structural inertia in China; and (3) lack of openness to the outside world. The authors also attribute the US's leadership in innovation to its culture of encouraging experimentation, tolerating failure and accepting deviance, and to its institutional support for decentralization of and competition in R&D and basic research. This commentary aims to enrich this insightful analysis. We focus on (1) the reasons for the demise of Chinese leadership in science and technology since the middle of the Ming dynasty, and (2) the historical and cultural obstacles to the development of frame-breaking innovations in modern China.
During the 30th Chinese Antarctic Expedition in 2013/14, the Chinese icebreaker RV Xuelong answered a rescue call from the Russian RV Akademik Shokalskiy. While assisting the repatriation of personnel from the Russian vessel to the Australian RV Aurora Australis, RV Xuelong itself became entrapped within the compacted ice in the Adélie Depression region. Analysis of MODIS and SAR imagery provides a detailed description of the regional sea-ice conditions which led to the 6 day long besetment of RV Xuelong. The remotely sensed imagery revealed four stages of sea-ice characteristics during the entrapment: the gathering, compaction, dispersion and calving stages. Four factors characterizing the local sea-ice conditions during late December 2013 and early January 2014 were identified: surface component of the coastal current; near-surface wind; ocean tides; and surface air temperature. This study demonstrates that shipping activity in ice-invested waters should be underpinned by general knowledge of the ice situation. In addition, during such activity high spatiotemporal resolution remotely sensed data should be acquired regularly to monitor local and regional sea-ice changes with a view to avoiding the besetment of vessels.
Blue-ice areas (BIAs) and their geographical distribution in Antarctica were mapped using Landsat-7 ETM+ images with 15 m spatial resolution obtained during the 1999–2003 austral summers and covering the area north of 82.5° S, and a snow grain-size image of the MODIS-based Mosaic of Antarctica (MOA) dataset with 125 m grid spacing acquired during the 2003/04 austral summer from 82.5°S to the South Pole. A map of BIAs was created with algorithms of thresholds based on band ratio and reflectance for ETM+ data and thresholds based on snow grain size for the MOA dataset. The underlying principle is that blue ice can be separated from snow or rock by their spectral discrepancies and by different grain sizes of snow and ice. We estimate the total area of BIAs in Antarctica during the data acquisition period is 234 549 km2, or 1.67% of the area of the continent. Blue ice is scattered widely over the continent but is generally located in coastal or mountainous regions. The BIA dataset presented in this study is the first map covering the entire Antarctic continent sourced solely from ETM+ and MODIS data. This dataset can potentially benefit other studies in glaciology, meteorology, climatology and paleoclimate, meteorite collection and airstrip site selection.
The polycrystalline n+/intrinsic silicon thin film stacks with various original intrinsic amorphous silicon layer thicknesses were formed using the multiple pulsed rapid thermal annealing process with the Ni-induced crystallization mechanism. The thick polycrystalline silicon stack was prepared by repeated steps of 1) amorphous silicon thin film deposition, 2) solution oxidation, 3) dehydrogenation, 4) pulsed rapid thermal annealing, and 5) oxide stripping. The poly-Si film properties, such as the grain size, orientation, and volume fraction of the crystalline phase, were related to the original intrinsic silicon film thickness and the total thermal budget. This process is effective in preparing the high volume fraction polycrystalline silicon thin film, which is important for low-cost thin-film solar cells, electronic and optoelectronic devices.
Light effects on the performance of the a-Si:H PIN photodiode has been studied. The leakage current-voltage and capacitance-voltage curves under the red, green and blue light illuminations were measured. The apparent charge storage density in the negative voltage range was quantified from the capacitance-voltage curve; charges in the positive voltage range were estimated from the leakage current-voltage curve. A comparison of charge storage capacities of diodes with different intrinsic layer thicknesses is also presented. The diode under the long wavelength light illumination condition stored more charges than that under the short wavelength light illumination condition because the former could penetrate the intrinsic a-Si:H layer deeper than the latter could. The leakage current and charge storage capacity of the diode are determined by the generation of electron-hole pairs, the depletion of charges in the intrinsic layer, and the supply of charges from the electrodes. The number of incident photons is critical to the process.
In this paper, we develop, analyze and test local discontinuous Galerkin (LDG) methods for solving the Degasperis-Procesi equation which contains nonlinear high order derivatives, and possibly discontinuous or sharp transition solutions. The LDG method has the flexibility for arbitrary h and p adaptivity. We prove the L2 stability for general solutions. The proof of the total variation stability of the schemes for the piecewise constant P0 case is also given. The numerical simulation results for different types of solutions of the nonlinear Degasperis-Procesi equation are provided to illustrate the accuracy and capability of the LDG method.
Inhibition of glycogen synthase kinase-3 (GSK-3) by pharmacological tools can produce antidepressant-like effects in rodents. However, the GSK-3 isoform(s) and brain region(s) involved in regulating these behavioural effects remain elusive. We studied the effects of bilateral intra-hippocampal injections of lentivirus-expressing short-hairpin (sh)RNA targeting GSK-3β on behavioural performance in mice subjected to chronic stress. Pre-injection of lentivirus-expressing GSK-3β shRNA into the hippocampal dentate gyrus significantly decreased immobility time in both forced swim and tail suspension tests, while the locomotor activity of these mice was unchanged. These results suggest that lentiviral GSK-3β shRNA injection induces antidepressant-like effects in chronically stressed mice. Under these conditions, the expression levels of GSK-3β were persistently and markedly reduced in the hippocampus following GSK-3β shRNA injection. To our knowledge, this is the first demonstration that a single injection of lentivirus-expressing GSK-3β shRNA in the hippocampal dentate gyrus of chronically stressed mice has antidepressant-like effects elicited by gene silencing.
A total of 327 yeast strains from seawater, sediments, mud of salterns, guts of the marine fish and marine algae were obtained. After crude protein of the yeasts was estimated by the method of Kjehldahl, we found that eight strains of the marine yeasts grown in the medium with 20 g l−1 glucose contained more than 30.4 g protein per 100 g of cell dry weight. The results of routine identification and molecular methods show that they belong to Metschnikowa reukaui, Cryptococcus aureus, Aureobasidium pullulan, Yarrowia lipolytica and Hanseniaspora uvarum, respectively. With the exception of Aureobasidium pullulans 4#2 with nucleic acid of 7.7% (w/w), all other yeast strains contained less than 5.0% (w/w) of nucleic acid. Analysis of fatty acids shows that all the yeast strains tested had a large amount of C18:0 and C18:1 fatty acids while analysis of amino acids indicates that the yeast strains tested had a large amount of essential amino acids, especially lysine and leucine which are very important nutritive components for marine animals.