We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
The impact of diet on the metabolic syndrome (MetS) and CVD has been investigated widely, but few studies have investigated the association between dietary patterns (DP) and the predicted CVD, derived from reduced rank regression (RRR). The objectives of this study were to derive DP using RRR and principal component analysis (PCA) and investigate their associations with the MetS and estimated 10-year atherosclerotic CVD (ASCVD). We used the baseline dataset from the Xinjiang multi-ethnic cohort study in China, collected from June 2018 to May 2019. A total of 14 982 subjects aged 35–74 years from Urumqi, Huo Cheng and Mo Yu were included in the analysis. The 10-year ASCVD risk was estimated using the Chinese ASCVD risk equations. The associations of DP with the MetS and 10-year ASCVD were determined using multivariable logistic regression models. In Urumqi and Mo Yu, the increased RRR DP score was associated with a higher OR of having the MetS and with a higher OR of elevated 10-year ASCVD risk. However, only the first DP determined by PCA in Urumqi was inversely associated with the MetS and elevated 10-year ASCVD risk. The prevalence of the MetS and elevated ASCVD risk in urban population is higher than that in rural areas. Our results may help nutritionists develop more targeted dietary strategies to prevent the MetS and ASCVD in different regions in China.
The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.
The associations between sugar-sweetened beverage (SSB) and artificially sweetened beverage (ASB) consumption and the risk of metabolic syndrome (MetS) remain controversial. A quantitative assessment of dose–response associations has not been reported. This study aims to assess the associations between the risk of MetS and SSB, ASB, and total sweetened beverage (TSB, the combination of SSB and ASB) consumption by reviewing population-based epidemiological studies.
Design:
Meta-analysis.
Setting:
We searched PubMed, Embase and Web of Science databases prior to 4 November 2019, for relevant studies investigating the SSB–MetS and ASB–MetS associations. A random effects model was used to estimate pooled relative risks (RR) and 95 % CI. Dose–response association was assessed using a restricted cubic splines model.
Participants:
We identified seventeen articles (twenty-four studies, including 93 095 participants and 20 749 MetS patients).
Results:
The pooled RR for the risk of MetS were 1·51 (95 % CI 1·34, 1·69), 1·56 (1·32, 1·83) and 1·44 (1·19, 1·75) in high consumption group of TSB, SSB and ASB, respectively; and 1·20 (1·13, 1·28), 1·19 (1·11, 1·28) and 1·31 (1·05, 1·65) per 250 ml/d increase in TSB, SSB and ASB consumption, respectively. Additionally, we found evidence of non-linear, TSB–MetS and SSB–MetS dose–response associations and a linear ASB–MetS dose–response association.
Conclusions:
TSB, SSB and ASB consumption was associated with the risk of MetS. The present findings provide evidence that supports reducing intake of these beverages to lower the TSB-, SSB- and ASB-related risk of MetS.
Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulphadiazine and pyrimethamine. However, both drugs have serious side-effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-T. gondii drugs with high potency and less or no side-effects. Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its proliferation in Vero cells in vitro without being toxic to Vero cells (P ≤ 0.01). Lumefantrine prolonged mice infected with T. gondii from death for 3 days at the concentration of 50 μg L−1 than negative control (phosphate-buffered saline treated only), and reduced the parasite burden in mouse tissues in vivo (P ≤ 0.01; P ≤ 0.05). In addition, a significant increase in interferon gamma (IFN-γ) production was observed in high-dose lumefantrine-treated mice (P ≤ 0.01), whereas interleukin 10 (IL-10) and IL-4 levels increased in low-dose lumefantrine-treated mice (P ≤ 0.01). The results demonstrated that lumefantrine may be a promising agent to treat toxoplasmosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.
Near-interface colloidal monolayers are often used as model systems for research on hydrodynamics in biophysics systems and in the chemical industry. Using microrheological methods, the correlated diffusion of particles is experimentally measured in colloidal monolayers near a water–air interface. The results show that the scaling lengths
$({\chi _{||}},{\chi _ \bot })$
of such colloidal monolayers are anisotropic in two orthogonal directions within the monolayer, which are parallel and perpendicular to the line connecting the centres of a particle pair. The former
$({\chi _{||}})$
is the Saffman length of the monolayer, while the latter
$({\chi _ \bot })$
is a function of both the Saffman length and the radius of the colloids. The size of the colloids is involved in
${\chi _ \bot }$
but not
${\chi _{||}}$
, which reflects the discrete nature of the monolayer in the transverse direction and the continuous nature of the monolayer in the longitudinal direction. From the scaling lengths, the viscosities of the colloidal monolayers are obtained, which agree with those obtained from the single-particle diffusion coefficients. The influence of the boundary condition imposed by the nearby interface on the hydrodynamic interactions is in a power-law behaviour of the distance z.
Calcified cyanobacteria are of considerable research value for reconstructing the ecology of Paleozoic and Mesozoic benthic communities on carbonate platforms due to their ability to produce oxygen and fix nitrogen and CO2. The diversity and abundance of calcified cyanobacteria was initially suggested to have declined in the Middle and Late Ordovician, although more recent work suggests that complex and diverse assemblages persisted throughout the Ordovician. Here, calcified cyanobacteria and associated microfossil flora from the Middle and Late Ordovician of the Ordos Basin, North China Block, are systematically described for the first time based on 1330 thin sections from seven outcrop profiles and four drill cores. In total, there are 18 species belonging to 16 genera, including a new species, Proaulopora ordosia n. sp. Girvanella, Subtifloria, Acuasiphonoria, Xianella, and Oscillatoriaceae gen. indet. are assigned to Osillatoriales of cyanobacteria; Ortonella, Hedstroemia, Cayeuxia, Zonotrichites, Proaulopora, and Phacelophyton are assigned to Nostocales of cyanobacteria; and Garwoodia, Renalcis, Izhella, Rothpletzella, and Wetheredella are assigned to calcified Microproblematica. A literature survey of Ordovician microfloral assemblages shows that cyanobacteria and associated microfossils occur in reef, open platform, lagoon, and tidal facies. Most genera occur on at least two independent blocks, and many have a cosmopolitan distribution in similar sedimentary facies. Our research suggests that calcified cyanobacteria and associated microfossils formed complex ecosystems and played greater ecological roles on carbonate platforms during the late Middle and Late Ordovician than was previously thought.
Solid solution 0.94Na0.5Bi0.5TiO3–6BaTiO3 (NBT–6BT) is considered to be one kind of lead-free piezoelectric materials with excellent electrical properties due to the existence of morphotropic phase boundary (MPB). However, its relatively lower depolarization temperature is a long-standing bottleneck for the application of NBT-based piezoelectric ceramics. In this work, the influence of thermal quenching on depolarization temperature and electrical properties of rare-earth Ho-doped NBT–6BT lead-free ceramics was investigated. It was shown that the relative high piezoelectric performance, as well as an improvement of depolarization temperature (Td), can be realized by thermal quenching. The results showed that the quenching process induced high concentration of oxygen vacancy, giving rise to the change of octahedra mode and enhanced lattice distortion, which is benefit to the temperature stability of piezoelectric and ferroelectric properties. Furthermore, up-conversion photoluminescence (PL) of Ho-doped NBT–6BT could be effectively tuned by the introduction of oxygen vacancy, suggesting a promising potential in optical–electrical multifunctional devices.
A study of low-speed streaks (LSSs) embedded in the near-wall region of a turbulent boundary layer is performed using selective visualization and analysis of time-resolved tomographic particle image velocimetry (tomo-PIV). First, a three-dimensional velocity field database is acquired using time-resolved tomo-PIV for an early turbulent boundary layer. Second, detailed time-line flow patterns are obtained from the low-order reconstructed database using ‘tomographic visualizations’ by Lagrangian tracking. These time-line patterns compare remarkably well with previously observed patterns using hydrogen bubble flow visualization, and allow local identification of LSSs within the database. Third, the flow behaviour in proximity to selected LSSs is examined at varying wall distances (
$10 < y^+ < 100$
) and assessed using time-line and material surface evolution, to reveal the flow structure and evolution of a streak, and the flow structure evolving from streak development. It is observed that three-dimensional wave behaviour of the detected LSSs appears to develop into associated near-wall vortex flow structures, in a process somewhat similar to transitional boundary layer behaviour. Fourth, the presence of Lagrangian coherent structures is assessed in proximity to the LSSs using a Lagrangian-averaged vorticity deviation process. It is observed that quasi-streamwise vortices, adjacent to the sides of the streak-associated three-dimensional wave, precipitate an interaction with the streak. Finally, a hypothesis based on the behaviour of soliton-like coherent structures is made which explains the process of LSS formation, bursting behaviour and the generation of hairpin vortices. Comparison with other models is also discussed.
The Eating Assessment in Toddlers FFQ (EAT FFQ) has been shown to have good reliability and comparative validity for ranking nutrient intakes in young children. With the addition of food items (n 4), we aimed to re-assess the validity of the EAT FFQ and estimate calibration factors in a sub-sample of children (n 97) participating in the Growing Up Milk – Lite (GUMLi) randomised control trial (2015–2017). Participants completed the ninety-nine-item GUMLi EAT FFQ and record-assisted 24-h recalls (24HR) on two occasions. Energy and nutrient intakes were assessed at months 9 and 12 post-randomisation and calibration factors calculated to determine predicted estimates from the GUMLi EAT FFQ. Validity was assessed using Pearson correlation coefficients, weighted kappa (κ) and exact quartile categorisation. Calibration was calculated using linear regression models on 24HR, adjusted for sex and treatment group. Nutrient intakes were significantly correlated between the GUMLi EAT FFQ and 24HR at both time points. Energy-adjusted, de-attenuated Pearson correlations ranged from 0·3 (fibre) to 0·8 (Fe) at 9 months and from 0·3 (Ca) to 0·7 (Fe) at 12 months. Weighted κ for the quartiles ranged from 0·2 (Zn) to 0·6 (Fe) at 9 months and from 0·1 (total fat) to 0·5 (Fe) at 12 months. Exact agreement ranged from 30 to 74 %. Calibration factors predicted up to 56 % of the variation in the 24HR at 9 months and 44 % at 12 months. The GUMLi EAT FFQ remained a useful tool for ranking nutrient intakes with similar estimated validity compared with other FFQ used in children under 2 years.
Increased population movements and increased mobility made it possible for severe acute respiratory syndrome coronavirus 2, which is mainly spread by respiratory droplets, to spread faster and more easily. This study tracked and analysed the development of the coronavirus 2019 (COVID-19) outbreak in the top 100 cities that were destinations for people who left Wuhan before the city entered lockdown. Data were collected from the top 100 destination cities for people who travelled from Wuhan before the lockdown, the proportion of people travelling into each city, the intensity of intracity travel and the daily reports of COVID-19. The proportion of the population that travelled from Wuhan to each city from 10 January 2020 to 24 January 2020, was positively correlated with and had a significant linear relationship with the cumulative number of confirmed cases of COVID-19 in each city after 24 January (all P < 0.01). After the State Council launched a multidepartment joint prevention and control effort on 22 January 2020 and compared with data collected on 18 February, the average intracity travel intensity of the aforementioned 100 cities decreased by 60−70% (all P < 0.001). The average intensity of intracity travel on the nth day in these cities during the development of the outbreak was positively related to the growth rate of the number of confirmed COVID-19 cases on the n + 5th day in these cities and had a significant linear relationship (P < 0.01). Higher intensities of population movement were associated with a higher incidence of COVID-19 during the pandemic. Restrictions on population movement can effectively curb the development of an outbreak.
The microstructure evolution, dynamic recrystallization (DRX) and precipitation of the ZM61 alloy sheets prepared with different rolling conditions were studied. The DRX grain sizes (dDRX) at four high strain rate rolling (HSRR) temperatures (275–350 °C) are 1.9, 2.3, 2.6 and 3.1 μm, respectively, while the DRX volume fractions (fVDRX) are 69, 73, 76 and 82%, respectively. 300 °C is selected as the optimal HSRR temperature. The dDRX and fVDRX of the alloys prepared by pre-rolling (PR) at 300 °C + HSRR are 1.0 μm and 91%, respectively. The PR treatment does not change the types of the precipitates but promotes the precipitation. The tensile strength (UTS) of 369 MPa and yield strength (YS) of 261 MPa can be achieved by HSRR at 300 °C, while a further increase in both UTS and YS can be obtained by PR treatment.
The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of > 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (> 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.
The time to positivity (TTP) of blood cultures has been considered a predictor of clinical outcomes for bacteremia. This retrospective study aimed to determine the clinical value of TTP for the prognostic assessment of patients with Escherichia coli bacteremia. A total of 167 adult patients with E.coli bacteremia identified over a 22-month period in a 3500-bed university teaching hospital in China were studied. The standard cut-off TTP was 11 h in the patient cohort. The septic shock occurred in 27.9% of patients with early TTP (⩽11 h) and in 7.1% of those with a prolonged TTP (>11 h) (P = 0.003). The mortality rate was significantly higher for patients in the early than in the late group (17.7% vs. 4.0%, P < 0.001). Multivariate analysis showed that an early TTP (OR 4.50, 95% CI 1.70–11.93), intensive care unit admission (OR 8.39, 95% CI 2.01–35.14) and neutropenia (OR 4.20, 95% CI 1.55–11.40) were independently associated with septic shock. Likewise, the independent risk factors for mortality of patients were an early TTP (OR 3.80, 95% CI 1.04–12.90), intensive care unit admission (OR 6.45; 95% CI 1.14–36.53), a Pittsburgh bacteremia score ⩾2 (OR 4.34, 95% CI 1.22–15.47) and a Charlson Comorbidity Index ⩾3 (OR 11.29, 95% CI 2.81–45.39). Overall, a TTP for blood cultures within 11 h appears to be associated with worse outcomes for patients with E.coli bacteremia.