We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
Spinal fusion surgery (SFS) is one of the most common operations in the United States, >450,000 SFSs are performed annually, incurring annual costs >$10 billion.
Objectives:
We used a nationwide longitudinal database to accurately assess incidence and payments associated with management of postoperative infection following SFS.
Methods:
We conducted a retrospective, observational cohort analysis of 210,019 patients undergoing SFS from 2014 to 2018 using IBM MarketScan commercial and Medicaid–Medicare databases. We assessed rates of superficial/deep incisional SSIs, from 3 to 180 days after surgery using Cox proportional hazard regression models. To evaluate adjusted payments for patients with/without SSIs, adjusted for inflation to 2019 Consumer Price Index, we used generalized linear regression models with log-link and γ distribution.
Results:
Overall, 6.6% of patients experienced an SSI, 1.7% superficial SSIs and 4.9% deep-incisional SSIs, with a median of 44 days to presentation for superficial SSIs and 28 days for deep-incisional SSIs. Selective risk factors included surgical approach, admission type, payer, and higher comorbidity score. Postoperative incremental commercial payments for patients with superficial SSI were $20,800 at 6 months, $26,937 at 12 months, and $32,821 at 24 months; incremental payments for patients with deep-incisional SSI were $59,766 at 6 months, $74,875 at 12 months, and $93,741 at 24 months. Corresponding incremental Medicare payments for patients with superficial incisional at 6, 12, 24-months were $11,044, $17,967, and $24,096; while payments for patients with deep-infection were: $48,662, $53,757, and $73,803 at 6, 12, 24-months.
Conclusions:
We identified a 4.9% rate of deep infection following SFS, with substantial payer burden. The findings suggest that the implementation of robust evidence-based surgical-care bundles to mitigate postoperative SFS infection is warranted.
For individual cultures, findings on regulating embryo density by changing the microdrop volume are contradictory. The aim of this study was to investigate the relationship between embryo density and the developmental outcome of day 3 embryos after adjusting covariates. In total, 1196 embryos from 206 couples who had undergone in vitro fertilization treatment were analyzed retrospectively. Three embryo densities were used routinely, i.e. one embryo in a drop (30 μl/embryo), two embryos in a drop (15 μl/embryo) and three embryos in a drop (10 μl/embryo). Embryo quality on day 3 was evaluated, both the cell number of day 3 embryos and the proportion of successful implantations served as endpoints. Maternal age, paternal age, antral follicles and level of anti-Müllerian hormone, type of infertility, controlled ovarian stimulation protocol, length of stimulation, number of retrieved oocytes, number of zygotes (two pronuclei) and insemination type were covariates and adjusted. After adjusting fully for all covariates, the cell number of day 3 embryos was significantly increased by 0.40 (95% CI 0.00, 0.79; P = 0.048) and 0.78 (95% CI 0.02, 1.54; P = 0.044) in the 15 μl/embryo and 10 μl/embryo group separately, compared with the 30 μl/embryo group. The proportions of implanted embryos were 42.1%, 48.7% and 0.0% in the 30 μl/embryo, 15 μl/embryo and 10 μl/embryo groups respectively. There was no statistical significance (P = 0.22) between the 30 μl/embryo group and the 15 μl/embryo group. After adjusting for confounders that were significant in univariate analysis, embryo density was still not associated with day 3 embryo implantation potential (P > 0.05). In a 30-μl microdrop, culturing embryos with an embryo density of both 15 and 10 μl/embryo increased the cell number of day 3 embryos, which did not benefit embryo implanting potential, compared with individual culture of 30 μl/embryo.
With the increase of crewed space missions and the rise of space microbiology, the research of microbes grown under microgravity environment has been attracting more attention. The research scope in space microbiology has been extended beyond pathogens directly related to spaceflight. Y. pestis, the causative agent of plague, is also of interest to researchers. After being cultivated for 40 consecutive passages in either simulated microgravity (SMG) or normal gravity (NG) conditions, the Y. pestis strain 201 cultures were analysed regarding their phenotypic features. By using crystal violet staining assays, increased biofilm amount was detected in Y. pestis grown under SMG condition. Besides that, the damage degrees of Hela cell caused by SMG-grown Y. pestis were found diminished in comparison to those under NG condition. Consistent with this observation, the death course was delayed in mice infected with SMG-grown Y. pestis, suggesting that microgravity condition can contribute the attenuated virulence. RNA-seq-based transcriptomics analysis showed that a total of 218 genes were differentially regulated, of which 91 upregulated and 127 downregulated. We found that dozens of virulence-associated genes were downregulated, which partially explained the reduced virulence of Y. pestis under SMG condition. Our study demonstrated that long-term exposure to SMG influences the pathogenesis and biofilm formation ability of Y. pestis, which provides a novel avenue to study the mechanism of physiology and virulence of this pathogen. Microgravity enhanced the ability of biofilm formation and reduced the virulence and cytotoxicity of Y. pestis. Many virulence-associated genes of Y. pestis were differentially regulated in response to the stimulated microgravity. However, there is no molecular evidence to explain the enhanced biofilm formation ability, which requires further research. Taken together, the phenotype changes of Y. pestis under SMG conditions can provide us a new research direction of its potential pathogenesis.
Excitation–emission-spectral unmixing-based fluorescence resonance energy transfer (ExEm-spFRET) microscopy exhibits excellent robustness in living cells. We here develop an automatic ExEm-spFRET microscope with 3.04 s of time resolution for a quantitative FRET imaging. The user-friendly interface software has been designed to operate in two modes: administrator and user. Automatic background recognition, subtraction, and cell segmentation were integrated into the software, which enables FRET calibration or measurement in a one-click operation manner. In administrator mode, both correction factors and spectral fingerprints are only calibrated periodically for a stable system. In user mode, quantitative ExEm-spFRET imaging is directly implemented for FRET samples. We implemented quantitative ExEm-spFRET imaging for living cells expressing different tandem constructs (C80Y, C40Y, C10Y, and C4Y, respectively) and obtained consistent results for at least 3 months, demonstrating the stability of our microscope. Next, we investigated Bcl-xL-Bad interaction by using ExEm-spFRET imaging and FRET two-hybrid assay and found that the Bcl-xL-Bad complexes exist mainly in Bad-Bcl-xL trimers in healthy cells and Bad-Bcl-xL2 trimers in apoptotic cells. We also performed time-lapse FRET imaging on our system for living cells expressing Yellow Cameleon 3.6 (YC3.6) to monitor ionomycin-induced rapid extracellular Ca2+ influx with a time interval of 5 s for total 250 s.
This research communication aims to characterize the prevalence, molecular characterization and antimicrobial resistance profiling of Streptococcus agalactiae isolated from clinical mastitis in China. A total of 140 Strep. agalactiae isolates were identified from 12 out of 201 farms in 6 provinces, overall herd prevalence was 18.6% and the MLST analysis showed clonal complexes (CC) 103 and CC 67 were present in these herds with CC 103 predominant, accounting for 97.9%. Isolates were mostly sensitive to the tested antimicrobials: penicillin, ceftiofur, amoxi/clav, cefquinome, and vancomycin (100%), followed by cefalexin (97.9%), oxacillin (96.4%), enrofloxacin (95.7%), erythromycin (89.3%), and clindamycin (88.6%). Only 19.3 and 0.7% of isolates were sensitive to tetracycline and daptomycin, respectively, and sequence type (ST) 103 was most resistant to antimicrobials. In conclusion, CC 103 was the predominant subgroup of bovine mastitis Strep. agalactiae in China, and most antimicrobials apart from tetracycline and daptomycin were effective.
We aimed to investigate the relationship between the neutrophil to lymphocyte ratio (NLR) and nutritional parameters in chronic kidney disease (CKD) patients. In this cross-sectional study, 187 non-dialysis CKD patients were enrolled. Daily dietary energy intake (DEI) and daily dietary protein intake (DPI) were assessed by 3-d dietary records. Protein-energy wasting (PEW) was defined as Subjective Global Assessment (SGA) class B and C. Spearman correlation analysis, logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed. The median NLR was 2·51 (1·83, 3·83). Patients with CKD stage 5 had the highest NLR level. A total of 19·3 % (n 36) of patients suffered from PEW. The NLR was positively correlated with SGA and serum P, and the NLR was negatively correlated with BMI, waist and hip circumference, triceps skinfold thickness, mid-arm muscle circumference, DPI and Hb. Multivariate logistic regression analysis adjusted for DPI, DEI, serum creatinine, blood urea nitrogen, uric acid and Hb showed that a high NLR was an independent risk factor for PEW (OR = 1·393, 95 % CI 1·078, 1·800, P = 0·011). ROC analysis showed that an NLR ≥ 2·62 had the ability to identify PEW among CKD patients, with a sensitivity of 77·8 %, a specificity of 62·3 % and an AUC of 0·71 (95 % CI 0·63, 0·81, P < 0·001). The NLR was closely associated with nutritional status. NLR may be an indicator of PEW in CKD patients.
At present, the study on autonomous unmanned ground vehicle navigation in an unstructured environment is still facing great challenges and is of great significance in scenarios where search and rescue robots, planetary exploration robots, and agricultural robots are needed. In this paper, we proposed an autonomous navigation method for unstructured environments based on terrain constraints. Efficient path search and trajectory optimization on octree map are proposed to generate trajectories, which can effectively avoid various obstacles in off-road environments, such as dynamic obstacles and negative obstacles, to reach the specified destination. We have conducted empirical experiments in both simulated and real environments, and the results show that our approach achieved superior performance in dynamic obstacle avoidance tasks and mapless navigation tasks compared to the traditional 2-dimensional or 2.5-dimensional navigation methods.
A conic bundle is a contraction
$X\to Z$
between normal varieties of relative dimension
$1$
such that
$-K_X$
is relatively ample. We prove a conjecture of Shokurov that predicts that if
$X\to Z$
is a conic bundle such that X has canonical singularities and Z is
$\mathbb {Q}$
-Gorenstein, then Z is always
$\frac {1}{2}$
-lc, and the multiplicities of the fibres over codimension
$1$
points are bounded from above by
$2$
. Both values
$\frac {1}{2}$
and
$2$
are sharp. This is achieved by solving a more general conjecture of Shokurov on singularities of bases of lc-trivial fibrations of relative dimension
$1$
with canonical singularities.
Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.
Cancer remains the leading cause of death worldwide, and metastasis is still the major cause of treatment failure for cancer patients. Epithelial–mesenchymal transition (EMT) has been shown to play a critical role in the metastasis cascade of epithelium-derived carcinoma. Tumour microenvironment (TME) refers to the local tissue environment in which tumour cells produce and live, including not only tumour cells themselves, but also fibroblasts, immune and inflammatory cells, glial cells and other cells around them, as well as intercellular stroma, micro vessels and infiltrated biomolecules from the nearby areas, which has been proved to widely participate in the occurrence and progress of cancer. Emerging and accumulating studies indicate that, on one hand, mesenchymal cells in TME can establish ‘crosstalk’ with tumour cells to regulate their EMT programme; on the other, EMT-tumour cells can create a favourable environment for their own growth via educating stromal cells. Recently, our group has conducted a series of studies on the interaction between tumour-associated macrophages (TAMs) and colorectal cancer (CRC) cells in TME, confirming that the interaction between TAMs and CRC cells mediated by cytokines or exosomes can jointly promote the metastasis of CRC by regulating the EMT process of tumour cells and the M2-type polarisation process of TAMs. Herein, we present an overview to describe the current knowledge about EMT in cancer, summarise the important role of TME in EMT, and provide an update on the mechanisms of TME-induced EMT in CRC, aiming to provide new ideas for understanding and resisting tumour metastasis.
Accurate predetermination of the quantum yield ratio (QA/QD) and the extinction coefficient ratio (KA/KD) between acceptor and donor is a prerequisite for quantitative fluorescence resonance energy transfer (FRET) imaging. We here propose a method to measure KA/KD and QA/QD by measuring the excitation–emission spectra (ExEm-spectra) of one dish of cells expressing m (≥3) kinds of FRET constructs. The ExEm-spectra images are unmixed to obtain the weight maps of donor (WD), acceptor (WA), and acceptor sensitization (WS). For each cell, the frequency distribution plots of the WS/WD and WS/WA images are fitted by using a single-Gaussian function to obtain the peak values of WS/WD (SD) and WS/WA (SA). The statistical frequency-SD/SA plots from all cells are fitted by using a multi-Gaussian function to obtain the peak values of both SD and SA, and then the ranges of WS/WD (RSD) and WS/WA (RSA) for each FRET construct are predetermined. Based on the predetermined RSD and RSA values of FRET constructs, our method is capable of automatically classifying cells expressing different FRET constructs. Finally, the WS/WD–WA/WD plot from different kinds of cells is linearly fitted to obtain KA/KD and QA/QD values.
Noncompressible torso hemorrhage (NCTH) is a major challenge in prehospital bleeding control and is associated with high mortality. This study was performed to estimate medical knowledge and the perceived barriers to information acquisition among health-care workers (HCWs) regarding NCTH in China.
Methods:
A self-administered and validated questionnaire was distributed among 11 WeChat groups consisting of HCWs engaged in trauma, emergency, and disaster rescue.
Results:
A total of 575 HCWs participated in this study. In the knowledge section, the majority (87.1%) denied that successful hemostasis could be obtained by external compression. Regarding attitudes, the vast majority of HCWs exhibited positive attitudes toward the important role of NCTH in reducing prehospital preventable death (90.4%) and enthusiasm for continuous learning (99.7%). For practice, fewer than half of HCWs (45.7%) had heard of NCTH beforehand, only a minority (14.3%) confirmed they had attended relevant continuing education, and 16.3% HCWs had no access to updated medical information. The most predominant barrier to information acquisition was the lack of continuing training (79.8%).
Conclusions:
Knowledge and practice deficiencies do exist among HCWs. Obstacles to update medical information warrant further attention. Furthermore, education program redesign is also needed.
As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown.
Methods
To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis.
Results
Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus.
Conclusions
Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.
Angiopoietin-like 4 (ANGPTL4) is a potent regulator of triacylglycerol metabolism but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In this study, we explored the molecular characterization of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by peroxisome proliferator-activated receptor family (PPAR-α, β and γ) and expression of pparγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signaling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.
Almost all hospitals are equipped with air-conditioning systems to provide a comfortable environment for patients and staff. However, the accumulation of dust and moisture within these systems increases the risk of transmission of microbes and have on occasion been associated with outbreaks of infection. Nevertheless, the impact of air-conditioning on the transmission of microorganisms leading to infection remains largely uncertain. We conducted a scoping review to screen systematically the evidence for such an association in the face of the coronavirus disease 2019 epidemic. PubMed, Embase and Web of Science databases were explored for relevant studies addressing microbial contamination of the air, their transmission and association with infectious diseases. The review process yielded 21 publications, 17 of which were cross-sectional studies, three were cohort studies and one case−control study. Our analysis showed that, compared with naturally ventilated areas, microbial loads were significantly lower in air-conditioned areas, but the incidence of infections increased if not properly managed. The use of high-efficiency particulate air (HEPA) filtration not only decreased transmission of airborne bioaerosols and various microorganisms, but also reduced the risk of infections. By contrast, contaminated air-conditioning systems in hospital rooms were associated with a higher risk of patient infection. Cleaning and maintenance of such systems to recommended standards should be performed regularly and where appropriate, the installation of HEPA filters can effectively mitigate microbial contamination in the public areas of hospitals.
The effect of vitamin D (VD) on the risk of preeclampsia (PE) is uncertain. Few of previous studies focused on the relationship between dietary VD intake and PE risk. Therefore, we conducted this 1:1 matched case–control study to explore the association of dietary VD intake and serum VD concentrations with PE risk in Chinese pregnant women. A total of 440 pairs of participants were recruited during March 2016 to June 2019. Dietary information was obtained using a seventy-eight-item semi-quantitative FFQ. Serum concentrations of 25(OH)D2 and 25(OH)D3 were measured by liquid chromatography–tandem MS. Multivariate conditional logistic regression was used to estimate OR and 95 % CI. Restricted cubic splines (RCS) were plotted to evaluate the dose–response relationship of dietary VD intake and serum VD concentrations with PE risk. Compared with the lowest quartile, the OR of the highest quartile were 0·45 (95 % CI 0·29, 0·71, Ptrend = 0·001) for VD dietary intake and 0·26 (95 % CI 0·11, 0·60, Ptrend = 0·003) for serum levels after adjusting for confounders. In addition, the RCS analysis suggested a reverse J-shaped relationship between dietary VD intake and PE risk (P-nonlinearity = 0·02). A similar association was also found between serum concentrations of total 25(OH)D and PE risk (P-nonlinearity = 0·02). In conclusion, this study provides evidence that higher dietary intake and serum levels of VD are associated with the lower risk of PE in Chinese pregnant women.
Varicella is a highly infectious contagious disease, and Chongqing is one of the high incidence areas in China. To understand the epidemic regularity and predict the epidemic trend of varicella is of great significance to the risk analysis and health resource allocation in the health sector. First, we used the ‘STL’ function to decompose the incidence of varicella to understand its trend and seasonality. Second, we established SARIMA model for linear fitting, and then took the residual of the SARIMA model as the sample to fit the LS-SVM model, to explain the non-linearity of the residuals. The monthly varicella incidence peaks in April to June and October to December. Mixed model was compared to SARIMA model, the prediction error of the hybrid model was smaller, and the RMSE and MAPE values of the hybrid model were 0.7525 and 0.0647, respectively, the mixed model had a better prediction effect. Based on the study, the incidence of varicella in Chongqing has an obvious seasonal trend, and a hybrid model can also predict the incidence of varicella well. Thus, hybrid model analysis is a feasible and simple method to predict varicella in Chongqing.
The North China Plain (NCP) is an important agricultural area, where conventional tillage (CT) is used year-round. However, long-term CT has damaged the soil structure, threatening agricultural sustainability. Since 2002, we have conducted a long-term tillage experiment in the NCP to explore the effects of different types of tillage on soil and crop yield. As part of long-term conservation tillage, we conducted a 2-year study in 2016/2017 to determine the impact of no tillage (NT), subsoiling (SS), rotary tillage (RT) and CT on soil aggregate distribution, aggregate-associated organic carbon (AOC), aggregate-associated microbial biomass carbon (AMBC), and maize yield. Compared to CT, NT increased the content of macro-aggregates (+4.8%), aggregate-AOC (+8.3%), and aggregate-AMBC (+18.3%), but decreased maize yield (−11.5%). SS increased the contents of macro-aggregates (+5%), aggregate-AOC (+14.7%), and aggregate-AMBC (+16%); although the yield increase was not significant (+0.22%), it had the highest economic benefit among the four tillage measures. RT had no significant advantage when considering the above soil variables; moreover, it reduced maize yield by 16.1% compared with CT. Overall, SS is a suitable tillage measure to improve soil macro-aggregate content, carbon content, yield, and economic benefit in the NCP area.