We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is to record some progress on the problem of determining which (bounded, linear) operators A on a separable Hilbert space H are commutators, in the sense that there exist bounded operators B and C on H satisfying A = BC — CB. It is thus natural to consider this paper as a continuation of the sequence (2; 3; 5). In §2 we show that many infinite diagonal matrices (with scalar entries) are commutators and that every weighted unilateral and bilateral shift is a commutator.
Let denote a separable, complex Hilbert space, and let R be a von Neumann algebra acting on . (A von Neumann algebra is a weakly closed, self-adjoint algebra of operators that contains the identity operator on its underlying space.) An element A of R is a commutator in R if there exist operators B and C in R such that A = BC — CB. The problem of specifying exactly which operators are commutators in R has been solved in certain special cases; e.g. if R is an algebra of type In (n < ∞) (2), and if R is a factor of type I∞ (1). It is the purpose of this note to treat the same problem in case R is a factor of type III. Our main result is the following theorem.
An invertible operator T on a Hilbert space is a multiplicative commutator if there exist invertible operators A and B on such that T = ABA–1B–1. In this paper we discuss the question of which operators are, and which are not, multiplicative commutators. The analogous question for additive commutators (operators of the form AB — BA) has received considerable attention and has, in fact, been completely settled (2). The present results represent the information we have been able to obtain by carrying over to the multiplicative problem the techniques that proved efficacious in the additive situation. While these results remain incomplete, they suffice, for example, to enable us to determine precisely which normal operators are multiplicative commutators.
In this note the Hilbert spaces under consideration are complex, and the operators referred to are bounded, linear operators. If is a Hilbert space, then the algebra of all operators on is denoted by .
It is known (1) that if is any Hilbert space, then the class of commutators on , i.e., the class of all operators that can be written in the form PQ — QP for some , can be exactly described. A similar problem is that of characterizing all operators on that can be written in the form for some .
This paper is a continuation of the earlier papers (1, 5) in which the author studied matrices with entries from the algebra C() of all continuous, complex-valued functions on an extremely disconnected, compact Hausdorff space . (Such spaces are sometimes called Stonian, after M. H. Stone, who first considered them in (8). They arise naturally as maximal ideal spaces of abelian W*-algebras.) In this note, three theorems are proved.
The theory of almost invariant half-spaces for operators on Banach spaces was begun recently and is now under active development. Much less attention has been given to almost invariant half-spaces for operators on Hilbert space, where some techniques and results are available that are not present in the more general context of Banach spaces. In this note, we begin such a study. Our much simpler and shorter proofs of the main theorems have important consequences for the matricial structure of arbitrary operators on Hilbert space.
In this paper we continue to modify and expand a technique due to Enflo for producing nontrivial hyperinvariant subspaces for quasinilpotent operators, and thereby obtain such subspaces for some additional quasinilpotent operators on Hilbert space. We also obtain a structure theorem for a certain class of operators.
Let be a separable, infinite dimensional, complex Hilbert space, and let denote the algebra of all bounded linear operators on . In what follows we shall denote the spectrum, essential spectrum, and left essential spectrum of an operator T in , respectively. Furthermore, if and T1 is unitarily equivalent to a compact perturbation of an operator T2, then we write T1~ T2, and if the compact perturbation can be chosen to have norm less than e, we write T1 ~ T2(ϵ).
Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.
Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.
It has been known for some time that one can construct a proof of the spectral theorem for a normal operator on a Hilbert space by applying the Gelfand representation theorem to the Abelian von Neumann algebra generated by the normal operator, and using the fact that the maximal ideal space of an Abelian von Neumann algebra is extremely disconnected. This, in fact, is the spirit of the monograph (8). On the other hand, it is difficult to find in print accounts of the spectral theorem from this viewpoint and, in particular, the treatment in (8) uses a considerable amount of measure theory and does not have the proof of the spectral theorem as its main objective.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.