L. E. J. Brouwer and David Hubert, two titans of twentieth-century mathematics, clashed dramatically in the 1920s. Though they were both Kantian constructivists, their notorious Grundlagenstreit centered on sharp differences about the foundations of mathematics: Brouwer was prepared to revise the content and methods of mathematics (his “Intuitionism” did just that radically), while Hilbert's Program was designed to preserve and constructively secure all of classical mathematics.
Hilbert's interests and polemics at the time led to at least three misconstruals of intuitionism, misconstruals which last to our own time: Current literature often portrays popular views of intuitionism as the product of Brouwer's idiosyncratic subjectivism; modern logicians view intuitionism as simply applying a non-standard formal logic to mathematics; and contemporary philosophers see that logic as based upon a pure assertabilist theory of meaning. These pictures stem from the way Hilbert structured the controversy.
Even though Brouwer's own work and behavior occasionally reinforce these pictures, they are nevertheless inaccurate accounts of his approach to mathematics. However, the framework provided by the Brouwer-Hilbert debate itself does not supply an adequate correction of these inaccuracies. For, even if we eliminate these mistakes within that framework, Brouwer's position would still appear fragmented and internally inconsistent. I propose a Kantian framework — not from Kant's philosophy of mathematics but from his general metaphysics — which does show the coherence and consistency of Brouwer's views. I also suggest that expanding the context of the controversy in this way will illuminate Hilbert's views as well and will even shed light upon Kant's philosophy.