We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The flash allowance and upset allowance have significant effects on characteristics of flash butt welded RS590CL steel joints. The overheated zone (OZ) widths increased with flash allowance (δf) increase, and decreased as the upset allowance (δu) increased. The coarsened upper bainite was formed in interface zone (IZ) and OZ as δf increased. With increasing δu, the large plastic deformation occurred and the interface formability improved. The hardness in IZ was a little lower than that in its vicinity OZ due to some ferrite existence and dislocation amount decreased in IZ. The tensile strengths of flash butt welding (FBW) joints were in good match with base metal and the ductilities were lower. The maximum bending crack length was 0.68 mm which indicated that the bending properties of FBW joints were good. Under this experiment, relatively large δf (10–12 mm) and δu (5.5–6.5 mm) were recommended for the benefit of high quality FBW joints.
A new experimental setup is described that allows us to study the state-selected
photodissociation dynamics of small molecules of astrophysical interest using two
independently tunable VUV radiation sources.
This paper presents new findings regarding the effects of precursor drop size and concentration on product particle size and morphology in ultrasonic spray pyrolysis. Large precursor drops (diameter >30 μm) generated by ultrasonic atomization at 120kHz yielded particles with holes. Precursor drops 6-9 μm in diameter, generated by an ultrasonic nebulizer at 1.65MHz and 23.5W electric drive power, yielded uniform spherical particles 150nm in diameter under proper control of heating rate and precursor concentration. Moreover, air-assisted ultrasonic spray pyrolysis at 120kHz and 2.3W yielded spherical particles of which nearly half were smaller than those produced by the ultrasonic spray pyrolysis of the 6-9 μm precursor drops, despite the much larger precursor drop sizes (28 μm peak diameter versus 7 μm mean diameter). These particles are much smaller than those predicted by the conventional one particle per drop mechanism, suggesting that a vapor condensation mechanism may also be involved in spray pyrolysis. It may be concluded that through this new mechanism air-assisted ultrasonic spray pyrolysis can become a viable process for mass production of nanoparticles.
Vibrational spectroscopy, photoluminescence, and optically detected electron paramagnetic resonance (ODEPR) have been used to characterize the defects produced in undoped and Sidoped GaN by the implantation of hydrogen. Several new vibrational bands were found near 3100 cm−1 in GaN that had been implanted with protons. These frequencies are close to those predicted for VGa−Hn complexes, leading to the tentative assignment of the new lines to VGa defects decorated with different numbers of H atoms. The proton implantation also produces an infrared PL band centered at 0.95 eV and the ODEPR spectrum labeled LE1, both of which were seen previously for electron-irradiated GaN.
Vibrational spectroscopy, photoluminescence, and optically detected electron paramagnetic resonance (ODEPR) have been used to characterize the defects produced in undoped and Si-doped GaN by the implantation of hydrogen. Several new vibrational bands were found near 3100 cm-1 in GaN that had been implanted with protons. These frequencies are close to those predicted for VGa-Hn complexes, leading to the tentative assignment of the new lines to VGa defects decorated with different numbers of H atoms. The proton implantation also produces an infrared PL band centered at 0.95 eV and the ODEPR spectrum labeled LEI, both of which were seen previously for electron-irradiated GaN.
The piezoresistive properties of boron-doped PECVD microcrystalline Si films (μc-Si) deposited on SiO2 coated Si, covar or quartz substrates have been investigated. The relations between the gauge factor (G.F.) and doping concentrations as well as the film thickness etc. have been obtained experimentally. The maximum longitudinal G.F. of 25 and 20 are measured for Si and covar substrates respectively. An expression for calculating G.F. of P-type μc-Si is derived theoretically by use of the splitting model of heavy and light hole band at k=0 and the thermionic emission theory. The calculated dependences of G.F. on the doping concentrations, grain size and trap state density agree well with the experimental results, which offer a better understanding of the piezoresistive characteristics of μc-Si or poly-Si, and enable optimized design and fabrication of μc-Si or poly-Si strain gauges.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.