We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Palmer amaranth control has become a major challenge for multiple cropping systems across the southeastern and midwestern United States. Despite extensive research on herbicide-resistance evolution, little research has been done exploring how Palmer amaranth might also be evolving other adaptive traits in response to different selection forces present in agricultural fields and the enrichment of soils with nutrients such as nitrogen. The objective of the present study was to determine whether Palmer amaranth populations have evolved different morphology and growth patterns in response to glyphosate use and fertilization history. Ten Palmer amaranth populations, including glyphosate-resistant (GR) and glyphosate-susceptible (GS) populations, were collected from different cropping systems with histories of high and low nitrogen fertilization in the states of Florida and Georgia. All populations were grown in pots filled with soil fertilized with either 0 or 40 kgNha−1, and their response to nitrogen was compared for morphological, growth, and nutrient-use traits. Populations differed in how they modified their morphology and growth in response to N, with major differences in traits such as foliar area, branch production, leaf shape, and canopy architecture. Populations with high nitrogen-fertilization histories had higher (>43%) nutrient-use efficiency (NUE) than populations with low nitrogen-fertilization histories. Similarly, GR populations have evolved higher NUE (>47%) and changed canopy architecture more than GS populations in response to nitrogen fertilization. The results of the present study highlight the importance of paying more attention to adaptations to cultural practices that might increase weediness and how genetic changes in traits involved in morphology and metabolism might favor compensatory mechanisms increasing the fitness of the population carrying herbicide-resistant traits.
Palmer amaranth’s ability to evolve resistance to different herbicides has been studied extensively, but there is little information about how this weed species might be evolving other life-history traits that could potentially make it more aggressive and difficult to control. We characterized growth and morphological variation among 10 Palmer amaranth populations collected in Florida and Georgia from fields with different cropping histories, ranging from continuous short-statured crops (vegetables and peanut) to tall crops (corn and cotton) and from intensive herbicide use history to organic production. Palmer amaranth populations differed in multiple traits such as fresh and dry weight, days to flowering, plant height, and leaf and canopy shape. Differences between populations for these traits ranged from 36% up to 87%. Although glyphosate-resistant (GR) populations collected from cropping systems including GR crops exhibited higher values of the aforementioned variables than glyphosate-susceptible (GS) populations, variation in traits was not explained by glyphosate resistance or distance between populations. Cropping system components such as crop rotation and crop canopy structure better explained the differences among populations. The higher growth of GR populations compared with GS populations was likely the result of multiple selection forces present in the cropping systems in which they grow rather than a pleiotropic effect of the glyphosate resistance trait. Results suggest that Palmer amaranth can evolve life-history traits increasing its growth and reproduction potential in cropping systems, which explains its rapid spread throughout the United States. Furthermore, our findings highlight the need to consider the evolutionary consequences of crop rotation structure and the use of more competitive crops, which might promote the selection of more aggressive biotypes in weed species with high genetic variability.
Email your librarian or administrator to recommend adding this to your organisation's collection.